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1 Preliminaries.

Let us start from the consideration of the e+e− annihilation Adler function. It is defined in the Euclidean region
as

D(L, as) = −dΠ(L, as)

d lnQ2
= Q2

∞∫
0

ds
Re+e−(l, as)

(s+Q2)2
, (1)

where as(µ
2) = as = αs/π, αs is the MS-scheme strong coupling constant, µ is the renormalization scale, L =

ln(µ2/Q2) and l = ln(µ2/s) respectively, Q2 = −q2 > 0 is the Euclidean kinematic variable and s = q2 > 0 is the
time-like Minkowskian variable.

The spectral function Re+e−(l, as) is the theoretical expression for the electron-positron annihilation R-ratio.
It is proportional to the experimentally measured total cross section σ(e+e− → γ∗ → hadrons). Π(L, as) is the
renormalized QCD expression for the photon vacuum polarization function, which enters in the two-point correlator
Πµν(q) of the electromagnetic quark vector currents jµ(x) as

Πµν(q) = i

∫
d4x eiqx⟨0|T{jµ(x)jν(0)}|0⟩ =

1

12π2
(qµqν − q2qµν)Π(q2). (2)

Here jµ(x) =
∑

f Qfψf (x)γ
µψf (x), Qf stands for the electric charge of the quark field ψf (x) with flavor f . Note

that since the vector current is conserved both in the renormalized and bare cases, the expression for the tensor
Πµν(q) is transverse in both cases as well.

The detailed theoretical studies, conducted in the works of Refs.[53, 54] and used later on in Refs.[55, 56], lead
to the following renormalization prescription for the photon vacuum polarization function in QCD:

Π(L, as) = Z(as) + ΠB(L, asB). (3)

Here ΠB(L, asB) is the unrenormalized QCD expression for the vacuum polarization function; asB = αsB/π =
µ2εZas

(as)as, αsB is the bare strong coupling and Zas
(as) is the corresponding renormalization constant, which

defines the QCD RG β-function; Z(as) = (Zph(as)− 1)/a, where a = α/π and α is the renormalized QED coupling,
defined in the case when the effects of its QED running are not taken into account, Zph(as) is the renormalization
constant of the photon wave function, considered in the case when the QCD corrections only are taken into.

Within the class of the MS-like subtraction schemes the expression for Z(as) contains the pole terms in ε

Z(as) =
∑
p≥1

ap−1
s

p∑
k=1

Zp,−k

εk
, (4)

whereas the quantity ΠB(L, asB) has the following form

ΠB(L, asB) =
∑
p≥1

(
µ2

Q2

)εp

ap−1
sB

∞∑
k=−p

Πp,kε
k (5)

with ε = (4− d)/2 and d is the space-time dimension.
The renormalized photon vacuum polarization function Π(L, as) obeys the following inhomogeneous RG equation:(

∂

∂ lnµ2
+ β(as)

∂

∂as

)
Π(L, as) = γ(as), (6)

where

γ(as) =
dΠ(L, as)

d lnµ2
(7)

is the QCD anomalous dimension of Π(L, as) and β(as) is the defining the scale dependence of the strong coupling
RG β-function, namely

β(as) =
∂as
∂ lnµ2

= −
∑
n≥0

βna
n+2
s . (8)



One should note that the RG β-function is included in the renormalized expression for the trace of the energy-
momentum tensor in the massless QCD and, therefore, is a measure of violation not only of the symmetry under the
dilatation transformations, but under the conformal ones as well.

Application of the renormalization procedure leads to the following perturbative expression for the photon vacuum
polarization function:

Π(L, as) = dR

(∑
f

Q 2
f

)
ΠNS(L, as) + dR

(∑
f

Qf

)2

ΠSI(L, as), (9)

where dR is the dimension of the fundamental representation of the considered generic simple gauge group. In our
study we are primarily interested in the case of the SU(Nc) gauge group with dR = Nc. In its particular case of
the SU(3) color group, relevant for physical QCD, Nc = 3. The quantities ΠNS(L, as) and ΠSI(L, as) are the flavor
non-singlet (NS) and singlet (SI) contributions to Π(L, as) respectively.

Substituting Π(L, as) from Eq.(9) into (6), one can get the PT expression for the photon anomalous dimension:

γ(as) = dR

(∑
f

Q 2
f

)
γNS(as) + dR

(∑
f

Qf

)2

γSI(as), (10)

where γNS(as) and γ
SI(as) are the PT series in strong coupling :

γNS(as) =
∑
n≥0

γna
n
s , γSI(as) =

∑
n≥3

γSI
n ans . (11)

Taking into account Eqs.(6), (8), one arrives to the following RG-improved expressions for ΠNS(L, as) and
ΠSI(L, as) at L = 0:

ΠNS(0, as(Q
2)) =

∑
n≥0

Πna
n
s (Q

2), ΠSI(0, as(Q
2)) =

∑
n≥3

ΠSI
n ans (Q

2). (12)

The solution of the RG equation (6) can be found perturbatively. Its explicit form obtained at the O(a4s) level is
presented in Appendix A.

Using the expressions, presented above, it is possible to derive the following expression for the Adler function

D(L, as) = γ(as)− β(as)
∂

∂as
Π(L, as). (13)

In contrast to the polarization operator, it is the RG-invariant quantity. Therefore, it satisfies the homogeneous
RG equation:

dD(L, as)

d lnµ2
=

(
∂

∂ lnµ2
+ β(as)

∂

∂as

)
D(L, as) = 0. (14)

Solving the system of the corresponding RG equations, one can get the following PT expression for the Adler
function

D(as(Q
2)) = dR

(∑
f

Q 2
f

)
DNS(as(Q

2)) + dR

(∑
f

Qf

)2

DSI(as(Q
2)), (15)

where its NS and SI contributions are defined as

DNS(as(Q
2)) =

∑
n≥0

dna
n
s (Q

2), (16a)

DSI(as(Q
2)) =

∑
n≥3

dSI
n ans (Q

2). (16b)

In the massless limit all logarithmic corrections to D(Q2), controlled by the RG, can be summed up into the
running coupling as(Q

2).



Using the explicit solution of Eq.(6) for Π(L, as), one can obtain the solution of the RG equation (14), expressed
in terms of the PT coefficients of Π(L, as), β(as) and γ(as). The explicit form of its O(a4s) approximation is given
in Appendix A as well.

Comparing solutions the expressions of Eqs.(16a-16b) with the ones following from Eq.(13) and taking into account
the dependence as(Q

2) on the Euclidean momentum Q2, we can obtain the following relations:

d0 = γ0, (17a)

d1 = γ1, (17b)

d2 = γ2 + β0Π1, (17c)

d3 = γ3 + 2β0Π2 + β1Π1, (17d)

d4 = γ4 + 3β0Π3 + 2β1Π2 + β2Π1, (17e)

dSI
3 = γSI

3 , (17f)

dSI
4 = γSI

4 + 3β0Π
SI
3 . (17g)

One should recall that in the class of the gauge-invariant MS-like schemes, the scheme dependence of the co-
efficients dk starts to manifest itself from k ≥ 2 due to scheme-dependent terms Πm at m ≥ 1. The expressions
(17a-17g) are derived comparing the RG-based relation directly associating the Adler function to the photon vacuum
polarization function and to its anomalous dimension.

The analytical expressions for the coefficients d0 ÷ d4 and γ0 ÷ γ4, Π0 ÷ Π3 may be found in Refs.[57] and [58]
correspondingly (see also references therein).

In the MS-like scheme the coefficients of the corresponding RG β-function up to β3-term are known from the
results of analytical calculations of Ref. [59], which were effectively confirmed by the foundation of nullification of
the three-loop DR- like scheme approximation for the RG β-function of N=4 SUSY YM theory (see e.g. [60]) and
by the direct analytical calculations from Ref.[61].

2 The {β}-expansion of γ(as) and Π(as).

As was already mentioned in the Introduction, the {β}-expansion formalism implies the representation of the
expressions of higher-order PT corrections to the massless RG-invariant quantities, evaluated in the gauge-invariant
renormalization schemes, through the sums of the monomials in powers of the RG β-function coefficients with
separating the scale-invariant contributions.

For instance, the coefficients d1 ÷ d4 and dSI
3 ÷ dSI

4 of the e+e− annihilation Adler function, defined in Eqs.(15),
(16a-16b), have the following {β}-expanded structure:

d1 = d1[0], (18a)

d2 = β0d2[1] + d2[0], (18b)

d3 = β2
0d3[2] + β1d3[0, 1] + β0d3[1] + d3[0], (18c)

d4 = β3
0d4[3] + β1β0d4[1, 1] + β2d4[0, 0, 1] + β2

0d4[2] + β1d4[0, 1] + β0d4[1] + d4[0], (18d)

dSI
3 = dSI

3 [0], (18e)

dSI
4 = β0d

SI
4 [1] + dSI

4 [0], (18f)

where terms dk[. . . ], d
SI
k [. . . ] do not contain nf -dependence (except for the flavor nf -dependence arising from the

contributions to d4[0] of the light-by-light scattering type diagrams [28, 29], [34]).
Starting from k ≥ 3, there is an ambiguity associated with fixing the terms dk[. . . ] (apart from the coefficients

dk[k− 1] defined by the leading renormalon chains effects, obtained in the case of QED in Ref.[62] and reformulated
to the case of QCD in Ref.[7] ).

It is related to the difficulty of univocal splitting of the nf -dependent contributions to higher-order corrections to
RG-invariant quantity between flavor-dependent coefficients βi (with i ≥ 0 ) of the RG β-function (see e.g. [4, 32, 39]).

One of the currently existing ways to resolve this problem was proposed in Ref.[28] and wider considered in
Refs.[29, 30]. In accordance with these considerations the PT expression for the NS-contribution to the Adler
function at the O(a4s) level can be presented through the following double sum:



DNS(as(Q
2)) = 1 +

3∑
n=0

(
β(as(Q

2))

as(Q2)

)n 4−n∑
k=1

Dn,ka
k
s(Q

2) (19)

= 1 +D0,1as(Q
2) +

(
D0,2 − β0D1,1

)
a2s(Q

2) +

(
D0,3 − β0D1,2 − β1D1,1 + β2

0D2,1

)
a3s(Q

2)

+

(
D0,4 − β0D1,3 − β1D1,2 − β2D1,1 + β2

0D2,2 + 2β0β1D2,1 − β3
0D3,1

)
a4s(Q

2).

We will not touch here the grounds of the presented in Eq.(19)-type representations, including the considered in
this paper case of the Adler function. The arguments in its favour are given in Refs.[28–30]. In fact the theoretical
ways of fixing analytical expressions of the terms dk[. . . ] are not not unique (see e.g. definite considerations, presented
in Refs. [29], [34, 35]). Here we will consider the one, outlined in Ref. [28] and followed in Ref. [30].

As observed by us there, it is applicable to the wider class of the functions and quantities in the corresponding
RG equations. One may ask us the following question: what are the theoretical and phenomenological reasons for
separating the scale-invariant contributions dk[0] from the total expressions for the coefficients dk?

The problem of careful consideration of the status of the PMC-related expressions and of the unraveling in them
of the effects related to the scale-invariant limit and to its violation by the CSB effects amongst the answers to this
question.

The PMC-related considerations enable to eliminate β-dependent terms in the coefficients dk of Eqs,(18b-18d)
and Eq. (18f) by redefining the scale parameter in every order of PT and to leave in the coefficients of the PT
expressions for the related to the Green functions quantities the scale-invariant parts dk[0] only.

As a result, the scale parameter becomes the coupling-dependent function (for the concrete realization of this
feature within large nf -expansion see Refs. [14, 15] and Ref.[16] while its PMC-type realizations are given in
Refs.[21, 32]). It is also important that the PT coefficients of higher-order corrections to the corresponding physical
quantities, studied in the gauge-invariant schemes are becoming independent on the choice of scale.

The representation of Eq.(19) allows not only to separate the scale-invariant contributions dk[0], but to reproduce
the structure of the {β}-expansion in Eqs, (18b-18d) as well. It also imposes essential restrictions on the terms of
this decomposition, namely:

d2[1] = d3[0, 1] = d4[0, 0, 1] = −D1,1, (20a)

d3[1] = d4[0, 1] = −D1,2, (20b)

d3[2] = d4[1, 1]/2 = D2,1. (20c)

This property is in correspondence with the feature of special degeneracy observed in Ref.[23] while applying
considered there Rδ-procedure.

Application of these relations allowed the authors of Ref.[28] to get the analytical expressions for the terms dk[. . . ]
with k ≤ 4 in the {β}-expansions (18b-18d). Their explicit form is given in Appendix B.

The representation (19) enabled also to fix several terms of the {β}-expansion of the totally unknown at present
coefficient d5 [29].

In the approach described above, for finding terms dk[. . . ] of the {β}-decomposed corrections to the e+e− annihi-
lation Adler function, it is not necessary to use any information about the possible {β}-structure of the RG-related
quantities such as the photon anomalous dimension or the vacuum polarization function. In this case we deal di-
rectly with the RG invariant quantity D(Q2). However, when we pass to consideration of the relation (13) between
D(L, as), γ(as) and Π(L, as) and to the expressions (17a-17g) following from it, the important issue whether or not
to decompose the coefficients of γ(as) and Π(L, as) is vividly arising.

We adhere here to the statement made previously in Refs.[29, 32, 39] that it is really necessary to decompose
them in combinations of the β-function coefficients.

In accordance with this opinion, in order to extract the scale-invariant contributions from the PT expressions for
the photon anomalous dimension, we should apply the {β}-expansion procedure to the coefficients γk and γSI

k of the
photon anomalous dimension function γ(as) in Eq.(11) as well.

The additional arguments in favor of this assertion will be given below. Following the proposal of Ref.[39], we



will write down:

γ1 = γ1[0], (21a)

γ2 = β0γ2[1] + γ2[0], (21b)

γ3 = β2
0γ3[2] + β1γ3[0, 1] + β0γ3[1] + γ3[0], (21c)

γ4 = β3
0γ4[3] + β1β0γ4[1, 1] + β2γ4[0, 0, 1] + β2

0γ4[2] + β1γ4[0, 1] + β0γ4[1] + γ4[0], (21d)

γSI
3 = γSI

3 [0], (21e)

γSI
4 = β0γ

SI
4 [1] + γSI

4 [0]. (21f)

The equation (13) leads to the relations dk[0] = γk[0] and dSI
k [0] = γSI

k [0]. This fact in conjunction with the
{β}-expansion (18a-18d) and equalities (20a-20c) entails the following relationships for terms γk[. . . ] of the photon
anomalous dimension:

γ2[1] = γ3[0, 1] = γ4[0, 0, 1], γ3[1] = γ4[0, 1], γ3[2] = γ4[1, 1]/2. (22)

Accommodating the explicit analytical expressions for the coefficients γ0 ÷ γ4 [58], β0 ÷ β2 [59] and using the
relations (22), we obtain the analytical expressions for terms γk[. . . ] and γ

SI
k [. . . ]:

γ1[0] =
3

4
CF , γ2[0] = − 3

32
C2

F +
1

16
CFCA, γ2[1] = γ3[0, 1] = γ4[0, 0, 1] =

11

16
CF , (23a)

γ3[1] = γ4[0, 1] =

(
239

192
− 11

4
ζ3

)
C2

F +

(
163

288
+

11

4
ζ3

)
CFCA, γ3[2] =

1

2
γ4[1, 1] = − 77

144
CF , (23b)

γ3[0] = − 69

128
C3

F +

(
− 101

256
+

33

16
ζ3

)
C2

FCA +

(
− 53

192
− 33

16
ζ3

)
CFC

2
A, (23c)

γ4[2] =

(
5467

1536
− 119

16
ζ3 +

99

32
ζ4

)
C2

F +

(
− 123

512
+

629

64
ζ3 −

99

32
ζ4

)
CFCA, (23d)

γ4[1] =

(
− 1477

256
− 135

32
ζ3 +

435

32
ζ5

)
C3

F +

(
4733

2048
+

1167

128
ζ3 −

297

128
ζ4 −

765

64
ζ5

)
C2

FCA (23e)

+

(
− 16453

18432
− 2109

256
ζ3 +

297

128
ζ4 −

135

128
ζ5

)
CFC

2
A, γ4[3] =

(
3− 107

384
− 3

8
ζ3

)
CF ,

γ4[0] =

(
4157

2048
+

3

8
ζ3

)
C4

F +

(
− 3509

1536
− 73

128
ζ3 −

165

32
ζ5

)
C3

FCA (23f)

+

(
9181

4608
+

299

128
ζ3 +

165

64
ζ5

)
C2

FC
2
A +

(
− 30863

36864
− 147

128
ζ3 +

165

64
ζ5

)
CFC

3
A

+

(
3

16
− 1

4
ζ3 −

5

4
ζ5

)
dabcdF dabcdA

dR
+

(
− 13

16
− ζ3 +

5

2
ζ5

)
dabcdF dabcdF

dR
nf ,

γSI
3 [0] =

(
11

192
− 1

8
ζ3

)
dabcdabc

dR
, γSI

4 [1] =

(
55

256
− 123

256
ζ3 +

9

64
ζ4 +

15

64
ζ5

)
dabcdabc

dR
, (23g)

γSI
4 [0] =

((
− 13

64
− 1

4
ζ3 +

5

8
ζ5

)
CF +

(
205

1536
− 13

64
ζ3 −

5

32
ζ5

)
CA

)
dabcdabc

dR
, (23h)

where ζn =
∑∞

k≥1 k
−n is the Riemann zeta-function; CF and CA are the quadratic Casimir operator in the funda-

mental and adjoint representation of the gauge group correspondingly, dabc = 2Tr(tat{ btc }), dabcdF = Tr(tat{ btctd })/6
and dabcdA = Tr(CaC{ bCcCd })/6, (Ca)bc = −ifabc are the generators of the adjoint representation with the anti-
symmetric structure constants fabc: [ta, tb] = ifabctc. The terms proportional to dabcdF dabcdF nf/dR and dabcdF dabcdA /dR
group structures are the light-by-light scattering effects and they have to be included in the scale-invariant “nf -
independent” coefficient γ4[0] [28, 29].

Using now the expressions (17a-17g), (21a-21f) and taking into account the following {β}-expansion structure of
the vacuum polarization function (9), (12)

Π0 = Π0[0], Π1 = Π1[0], Π2 = Π2[0] + β0Π2[1], Π3 = Π3[0] + β0Π3[1] + β1Π3[0, 1] + β2
0Π3[2], (24)



we arrive to the substantial relationships between terms dk[. . . ], γk[. . . ] and Πk[. . . ]:

d1[0] = γ1[0], d2[0] = γ2[0], d2[1] = γ2[1] + Π1[0], (25a)

d3[0] = γ3[0], d3[1] = γ3[1] + 2Π2[0], d3[0, 1] = γ3[0, 1] + Π1[0], d3[2] = γ3[2] + 2Π2[1], (25b)

d4[0] = γ4[0], d4[1] = γ4[1] + 3Π3[0], d4[0, 1] = γ4[0, 1] + 2Π2[0], d4[2] = γ4[2] + 3Π3[1], (25c)

d4[3] = γ4[3] + 3Π3[2], d4[1, 1] = γ4[1, 1] + 3Π3[0, 1] + 2Π2[1], (25d)

d4[0,0, 1] = γ4[0, 0, 1] + Π1[0], dSI
3 [0] = γSI

3 [0], dSI
4 [0] = γSI

4 [0], dSI
4 [1] = γSI

4 [1] + 3ΠSI
3 [0], (25e)

where ΠSI
3 [0] = ΠSI

3 . Applying these relations and using the explicit expressions for dk[. . . ] from Refs.[28, 29] and
for γk[. . . ] from Eqs.(23a-23h), we get the values of terms Πk[. . . ]:

Π0[0] =
5

3
, Π1[0] =

(
55

16
− 3ζ3

)
CF , Π2[1] =

(
3701

288
− 19

2
ζ3

)
CF , (26a)

Π2[0] =

(
− 143

96
− 37

8
ζ3 +

15

2
ζ5

)
C2

F +

(
73

72
− 3

4
ζ3 −

5

4
ζ5

)
CFCA, (26b)

Π3[2] =

(
196513

3456
− 809

24
ζ3 − 15ζ5

)
CF , Π3[0, 1] =

(
3701

432
− 19

3
ζ3

)
CF , (26c)

Π3[1] =

(
− 22103

4608
− 1439

24
ζ3 + 9ζ23 − 33

32
ζ4 +

125

2
ζ5

)
C2

F (26d)

+

(
29353

1536
− 473

192
ζ3 −

3

2
ζ23 +

33

32
ζ4 −

185

12
ζ5

)
CFCA,

Π3[0] =

(
− 31

256
+

39

32
ζ3 +

735

32
ζ5 −

105

4
ζ7

)
C3

F +

(
− 520933

55296
+

5699

384
ζ3 −

33

4
ζ23 +

99

128
ζ4 (26e)

− 565

64
ζ5 +

105

8
ζ7

)
C2

FCA −
(
112907

55296
+

5839

768
ζ3 −

33

4
ζ23 +

99

128
ζ4 −

835

384
ζ5 +

35

16
ζ7

)
CFC

2
A,

ΠSI
3 = ΠSI

3 [0] =

(
431

2304
− 63

256
ζ3 −

1

8
ζ23 − 3

64
ζ4 +

15

64
ζ5

)
dabcdabc

dR
. (26f)

One should note that in contrast to Eqs.(20a) and (22), for the analogous {β}-expanded terms of the photon
vacuum polarization function one has Π3[0, 1] ̸= Π2[1]. However, they turn out to be proportional to each other,
namely Π3[0, 1] = 2/3 ·Π2[1]. This follows from the fact that the derivative ∂/∂as is included in Eq.(13). Thus, the
analogue of the double sum representation (19) for the two-point correlator Π(as) is not fulfilled, but is held for the
term β(as)∂Π(as)/∂as in Eq.(13) as the whole.

After receiving the concrete results (23a-23h) and (26a-26f) for the {β}-expanded coefficients of γ(as) and Π(as) re-
spectively, we are moving now on to presenting extra arguments in favour of the necessity of their {β}-decomposition.

3 Arguments in favour of the {β}-expansion of γ(as).

While realizing the expressed in Refs.[16, 21] PMC ideas to the MS-scheme expression for the quantities, related
to the Adler function, the authors of the initial manuscripts of Refs.[23, 31] adhere the point of view that the {β}-
expansion procedure should not be applied to entering in the related to above presented Eq.(13) photon anomalous
dimension γ(as).

In the work of Ref.[32] within the effective QCD model with multiplet of massless gluinos the attempt to clarify
that the non-application of the {β}-expansion approach to γ(as) contradicts the renormalizability principles was
made.

However, the arguments, given within this effective QCD related model in the related to Ref.[32] works, nor the
arguments expressed within QCD itself in the work of Ref.[29] were not heard and the ideas of the applications of the
PMC approximants without using {β}-expansion of the photon anomalous dimension are continuing to be applied to



the related to Adler function quantities (see e.g. the works of Refs.[40–43] and the citations in the related discussions
in even experimentally related works).

To our understanding, the opinion of the authors of the papers of e.g. of Refs.[23, 31, 40–43] may be summarized
in the form of the following statements: since the anomalous dimension γ(as) is a scheme-invariant in the class of the
MS-like schemes it is associated with the renormalization of the QED coupling by the QCD corrections only. These
corrections are not related to the running of the strong coupling constant and thus the photon anomalous dimension
RG function should be considered as a conformal contribution during the PMC scale setting analysis.

Let us try to clarify once more not heard arguments given previously in Refs.[32, 39] and Ref. [29] rephrasing
them by other way as

� we disagree that γ(as) is not associated with the renormalization of the strong coupling constant. On the
contrary, the QCD photon anomalous dimension is inseparably related with the renormalization of the QCD
charge. Indeed, the coefficients of γ(as) are expressed through the first-order pole terms Zn+1,−1 of Z(as) (4):

γ(as) = −εZ(as) +
dZ(as)

d lnµ2
= −εZ(as) + (−εas + β(as))

∂Z(as)

∂as
= −

∑
n≥0

(n+ 1)Zn+1,−1 a
n
s . (27)

This fact directly follows from the condition of cancellation of the divergent terms in Eq.(3) and from the
relation between the bare coupling asB and the renormalized one as.

However, the renormalization prescription (3) allows to present the PT coefficients of the anomalous dimension
γ(as) through the terms Πp,k of the ε-expansion of the bare polarization operator ΠB(L, asB) (5) as well:

γ0 = Π1,−1, (28a)

γ1 = 2Π2,−1, (28b)

γ2 = 3Π3,−1 − 3β0Π2,0, (28c)

γ3 = 4Π4,−1 − 8β0Π3,0 − 2β1Π2,0 + 4β2
0Π2,1, (28d)

γ4 = 5Π5,−1 − 15β0Π4,0 − 5β1Π3,0 −
5

3
β2Π2,0 +

35

6
β0β1Π2,1 + 15β2

0Π3,1 − 5β3
0Π2,2. (28e)

Here the total prefactor dR
∑

f Q
2
f in the r.h.s. of Eqs.(28a-28e) is omitted.

The expressions (28a-28e) reveal explicitly the structure of the {β}-expansion in powers of the coefficients of
the QCD RG β-function. Moreover, the β-dependent terms in Eqs.(28c-28e) appear after the QCD charge
renormalization only.

Therefore, the total expression for the photon anomalous dimension should not be considered as the conformal
part of D(Q2)-function. the related to this understanding statement is presented below.

� Since the strong coupling is running then the QCD photon anomalous dimension is not a scale-invariant
object. Indeed, dγ(as)/d ln(Q

2) = β(as)∂γ(as)/∂as = −β0γ1a2s − (2β0γ2+β1γ1)a
3
s + . . . ̸= 0 where as=as(Q

2).
Therefore, the scheme-invariance of its coefficients in the class of the gauge-invariant renormalization MS-like
schemes (due to the relations γk = −(k+1)Zk+1,−1 (27) and the scheme-invariance of the first-order pole terms
in Z(as)) is not the argument against {β}-decomposition of γ(as).

Let us repeat now another given in Ref. [29] serious extra argument for applying β-expansion to γ(as).

� In the QED limit the term d̃2[0] (52b) becomes equal to d̃ QED
2 [0] = −3/32− 11/48N , where N is the number

of the charged leptons.

This expression is N -dependent and does not correspond to the Rosner’s result [63] of calculating of the diver-
gent part of the photon field renormalization constant Zph in the quenched QED, formulated in the diagram-
matic level in Ref.[64]. In this finite approximation the constant Zph does not contain the internal subgraphs

renormalizing electromagnetic charge. The result of this work is (Z−1
ph )div =

aB
3

(
1 +

3

4
aB − 3

32
a2B

)
ln
M2

m2
,

where aB = αB/π, αB is the bare fine-structure constant, m is the lepton mass and M is the large scale cutoff
mass.



The boxed term does not match the expression for d̃ QED
2 [0], obtained when the photon anomalous dimension

is not {β}-decomposed, but it is in full agreement with the result for d QED
2 [0], following from the U(1)-limit

of the given in Eq.(23a) SU(Nc) expression for γ2[0] after fixing CF = 1 and CA = 0.

There is also the N = 1 SUSY QCD argument in favour of the title of this section

� The NSVZ-like relation for the Adler function in the N = 1 SUSY QCD derived in Ref.[65] and its detailed
consideration at the three-loop level made in Ref.[66] serve as the extra arguments in favor of the {β}-expansion
of the SUSY analog of the photon anomalous dimension, namely the anomalous dimension of the matter
superfields. Indeed, the NSVZ relation will be violated at the three-loop level if one does not decompose this
anomalous dimension in the first coefficient of the corresponding β-function1.

Note that if we consider the Adler function defined in Eq.(15) directly, without involving Eq.(13) linking the
functions D(as), γ(as) and Π(as), then {β}-expansion for its PT expression should not depend on γ(as) and Π(as).

Moreover, from a formal point of view, for the {β}-decomposition there is no principal difference, for example,
between the PT series for D(Q2)-function, the Bjorken polarized sum rule or for the static interaction potential of
the heavy quark-antiquark pair.

However, the results of the {β}-expansion for the Adler function, presented in Ref.[31], depend on γ(as) in any
case.

At the same time in the same paper the {β}-decomposition for the static QCD Coulomb-like potential, calculated
analytically at the three-loop level in Ref.[67], is implemented on a general grounds as in Ref.[30] and for an arbitrary
RG-invariant quantity.

Therefore, the agreement of the results of {β}-expansion for the static potential derived in Ref.[31] with those
obtained in Ref.[30] in the framework of our formalism, is rather natural.

Thus, the photon anomalous dimension is the convenient ingredient for analytical calculations, but it should not
affect the structure of the {β}-expansion of the Adler function.

If one follows the logic of the works [23, 31, 40–43] and does not decompose the quantity γ(as) in powers of
βk-coefficients, then analytical expressions for the analogous to dk[. . . ]-coefficients will be different.

We denote these terms by d̃k[. . . ] to distinguish them from ours dk[. . . ]. For comparison of their analytical

structure see expressions for dk[. . . ] and d̃k[. . . ] in Appendix B.
Note, that the explicit analytical expressions for γ4 and Π3 contain the Riemann ζ4-contributions [58], which,

however, are mutually cancelled out in d4 [57], i.e.

d
(ζ4)
4 = γ

(ζ4)
4 + 3β0Π

(ζ4)
3 = 0. (29)

If we properly expand γ4 and Π3 (in accordance with Eqs.(21d) and (24)), we will naturally arrive to the absence
of the ζ4-contributions in expression for d4[0] [28, 29]. However, if one assumes that γ4 is a scale-invariant term, then

the coefficient d̃4[0] (see Eq.(52g)) will definitely contain ζ4-contributions.
This fact contradicts the consequences of the no-π theorem [68], explaining why ζ4-contribution should appear in

the expressions for higher-order PT corrections to the Adler function starting from the coefficient d5 only.
Let us now discuss the consequences stemming from the results of Refs.[23, 31, 40–42] for the terms d̃k[. . . ]

obtained when γ(as) is not {β}-expanded.

� In this case the {β}-decomposition of the coefficients dk of the Adler function has the following form:

d2 = β0d̃2[1] + d̃2[0], (30a)

d3 = β2
0 d̃3[2]︸ ︷︷ ︸
=0

+ β1d̃2[1] + 2β0d̃3[1] + d̃3[0], (30b)

d4 = β3
0 d̃4[3]︸ ︷︷ ︸
=0

+ 3β2
0 d̃4[2]︸ ︷︷ ︸
=0

+ 3β0d̃4[1] +
5

2
β1β0d̃3[2]︸ ︷︷ ︸

=0

+ 2β1d̃3[1] + β2d̃2[1] + d̃4[0], (30c)

1It may be interesting to get the arguments in favor of this statement in the N = 1 SUSY QCD at the four-loop level.



where curly brackets indicate terms with identically zero coefficients. It should be emphasized that this repre-
sentation does not correspond to the well-known renormalon asymptotics dk+1 ∼ βk

0k! at k ≫ 1 for higher-order
PT coefficients of the Adler function in the large-β0 approximation (see e.g. [1, 2, 52]).

Indeed, all terms d̃k+1[k] in Eqs.(30b-30c) at k ≥ 2 are identically equal to zero. Thus, if we do not decompose
the coefficients γk and Πk in powers of the RG β-function coefficients, then we will not reproduce the large-β0
asymptotics for dk in any order of PT starting from k = 3.

The leading renormalon chain contribution, whose explicit general formula for arbitrary order k follows from
analytical results, given in Refs.[7, 62], is fixed correctly when the photon anomalous dimension undergoes the
{β}-expansion procedure only. In its turn, in Refs.[23, 31, 40–42] the missing nf -dependent contributions are

hidden in the expressions for non-zero terms d̃2[0], d̃2[1]; d̃3[0], d̃3[1]; d̃4[0], d̃4[1] in Eqs.(30a-30c).

One more important point, which follows from toatally decomposed β-expanded represntation for the Adler
function is the recovery of its original BLM NLO expression.

Thus the worries of Ref.[64] on non-recovery of the BLM results within the considered in Ref.[23] application of
the Rδ procedure to the PT expression for the Adler function without proper expansion of the PT QCD series for
the photon anomalous dimension γ(ss) , critically commented in the more detailed PMC-related work of Ref.[31],
turned out to have rather solid background.

Since after applying the formulated in Eq.(19) multiple β-function representation to the Adler function we repro-
duce its NLO BLM expression, we will call it as PMC/BLM approach.

4 Application of the PMC/BLM to the Adler function.

4.1 Modified PMC expressions.

At the first stage of the BLM-related applications one should consider the scale transformations µ → µ′ and
introduce the shift parameter ∆ = L− L′ = ln(µ2/µ′2), where L′ = ln(µ′2/Q2).

Using now the scaling operator (which may also be called the dilatation operator), one can obtain the relation

between as(µ
2) and as(µ

′2) in the following form considered previously in Ref.[4] and [32]:

as(µ
2) = as(exp(∆) · µ′2) = exp

(
∆

d

d lnµ′2

)
a′s = exp

(
∆β(a′s)

∂

∂a′s

)
a′s (31)

= a′s +
∆

1!
β(a′s) +

∆2

2!
β(a′s)

∂

∂a′s
β(a′s) +

∆3

3!
β(a′s)

∂

∂a′s

(
β(a′s)

∂

∂a′s
β(a′s)

)
+ . . . ,

where a′s = as(µ
′2).

At the next step, we choose the PMC/BLM scale shift ∆ as a PT series in powers of β0a
′
s:

∆ = ln

(
µ2

µ′2

)
= ∆0 +

∑
k≥1

∆k(β0a
′
s)

k. (32)

Taking into account this representation, one can rewrite the relation (31) in the fourth order of approximation in
the following form:

as = a′s − β0∆0a
′ 2
s + (β2

0∆
2
0 − β1∆0 − β2

0∆1)a
′ 3
s (33)

+

(
5

2
β0β1∆

2
0 − β0β1∆1 + 2β3

0∆0∆1 − β3
0∆

3
0 − β2∆0 − β3

0∆2

)
a′ 4s .

Using now Eq.(33) at µ′2 = Q2, bearing in mind the RG invariance of the Adler function and its {β}-expansion
pattern (18a-18f), it is possible to get the expressions for the coefficients d′k of D(a′s)-function, normalized at the new



scale, in the form given in Refs.[4, 32]:

d′1 = d1[0], (34a)

d′2 = β0(d2[1]−∆0d1[0]) + d2[0], (34b)

d′3 + δf (d
SI
3 )′ = β2

0(d3[2]− 2∆0d2[1] + ∆2
0d1[0]−∆1d1[0]) + β1(d3[0, 1]−∆0d1[0]) (34c)

+ β0(d3[1]− 2∆0d2[0]) + d3[0] + δfd
SI
3 [0],

d′4 + δf (d
SI
4 )′ = β3

0(d4[3]− 3∆0d3[2] + 3∆2
0d2[1]− 2∆1d2[1] + 2∆0∆1d1[0]−∆3

0d1[0] (34d)

− ∆2d1[0]) + β0β1(d4[1, 1]− 3∆0d3[0, 1]− 2∆0d2[1] + 5∆2
0d1[0]/2

− ∆1d1[0]) + β2(d4[0, 0, 1]−∆0d1[0]) + β2
0(d4[2]− 3∆0d3[1] + 3∆2

0d2[0]

− 2∆1d2[0]) + β1(d4[0, 1]− 2∆0d2[0]) + β0(d4[1]− 3∆0d3[0])

+ β0δf (d
SI
4 [1]− 3∆0d

SI
3 [0]) + d4[0] + δfd

SI
4 [0],

where δf = (
∑
Qf )

2/
∑
Q2

f . Recall that the coefficients dk[. . . ] are presented in Appendix B.
Setting initially

∆0 = ∆BLM =
d2[1]

d1[0]
=

(
33

8
− 3ζ3

)
CF , (35)

one can introduce the energy scale Q2
0:

Q2
0 = Q2 exp(−∆0). (36)

At this new scale the expression for the Adler function reads

D(Q2) = 3
∑
f

Q2
f

(
1 + d1[0]as(Q

2
0) + d2[0]a

2
s(Q

2
0) +O(a3s(Q

2
0))

)
. (37)

Further on, taking into account the relation (35) and absorbing the remaining nf and βi-dependent contributions
in Eq.(34c) into parameter ∆1, we arrive to the following expression:

β0∆1(nf ) = β0

(
d3[2]

d1[0]
− d22[1]

d21[0]

)
+
d3[1]

d1[0]
− 2d2[0]d2[1]

d21[0]
+
β1
β0

d3[0, 1]− d2[1]

d1[0]
. (38)

Application of the PMC/BLM approach at the O(a3s) level eventually yields:

D(Q2) = 3
∑
f

Q2
f

(
1 + d1[0]as(Q

2
1) + d2[0]a

2
s(Q

2
1) + (d3[0] + δfd

SI
3 [0])a3s(Q

2
1) +O(a4s(Q

2
1))

)
, (39)

where Q2
1 is defined in accordance with Eqs.(32), (35-36), (38) as

Q2
1 = Q2 exp

(
−∆0 − β0∆1(nf )as(Q

2
0)

)
. (40)

Following this logic and using Eq.(34d), one can fix the parameter β2
0∆2 as

β2
0∆2(nf ) = β2

0

(
d4[3]

d1[0]
− 3

d2[1]d3[2]

d21[0]
+ 2

d32[1]

d31[0]

)
+ β1

(
d4[1, 1]

d1[0]
− 3

d2[1]d3[0, 1]

d21[0]
(41)

+
3

2

d22[1]

d21[0]
− d3[2]

d1[0]

)
+ β0

(
d4[2]

d1[0]
− 3

d3[1]d2[1]

d21[0]
+ 5

d2[0]d
2
2[1]

d31[0]
− 2

d2[0]d3[2]

d21[0]

)
+

d4[1]

d1[0]
− 3

d3[0]d2[1]

d21[0]
+ δf

(
dSI
4 [1]

d1[0]
− 3

dSI
3 [0]d2[1]

d21[0]

)
− 2

d2[0]d3[1]

d21[0]
+ 4

d22[0]d2[1]

d31[0]

+
β2
1

β2
0

d2[1]− d3[0, 1]

d1[0]
+
β1
β0

(
d4[0, 1]− d3[1]

d1[0]
− 2d2[0]

d21[0]
(d3[0, 1]− d2[1])

)
+

β2
β0

d4[0, 0, 1]− d2[1]

d1[0]
.



In this case, instead of the expressions (39) and (40) we obtain their higher order counterparts:

D(Q2) = 3
∑
f

Q2
f

(
1 + d1[0]as(Q

2
2) + d2[0]a

2
s(Q

2
2) + (d3[0] + δfd

SI
3 [0])a3s(Q

2
2) (42)

+ (d4[0] + δfd
SI
4 [0])a4s(Q

2
2) +O(a5s(Q

2
2))

)
,

Q2
2 = Q2 exp

(
−∆0 − β0∆1(nf )as(Q

2
1)− β2

0∆2(nf )a
2
s(Q

2
1)

)
. (43)

In a particular case of the SU(3) color gauge group the numerical forms of the parameters ∆0, β0∆1 and β2
0∆2 are

defined in correspondingly and are included into the determination of the scale Q2
2 in Eq.(43), read:

∆0 =
11

2
− 4ζ3 ≈ 0.6918,

β0∆1(nf ) = β0

(
119

36
+

56

3
ζ3 − 16ζ23

)
+

51

8
− 47

3
ζ3 +

50

3
ζ5 ≈ 2.6249β0 + 4.8249,

β2
0∆2(nf ) = −3.599β2

0 + 2.386β1 + 7.128β0 − 54.535− 0.292δf .

(44a)

(44b)

(44c)

Note that in the reality the expressions (44b) and (44c) do not contain the terms proportional to the factor β1/β0
and β2

1/β
2
0 , β1/β0, β2/β0, which are contained in their corresponding analytical forms, presented in Eq.(38)and

Eq.(41).
This pleasant fact is the consequence of the relationships (20a-20b) stemming from the multiple β-function

expansion (19), proposed in Ref.[28].
Using the values of the coefficients dk[. . . ], given in Appendix B and originally obtained in Ref.[28] within the

same decomposition (19) of the Adler function in powers of β(as)/as, advocated in our work, we get its numerical
expression in the case of the SU(3) color group relevant for physical QCD:

D(Q2) = 3
∑
f

Q2
f

(
1 + as(Q

2
2) +

1

12
a2s(Q

2
2) + (−23.2227− 0.4132δf )a

3
s(Q

2
2) (45)

+ (81.1571 + 0.0802nf − 2.7804δf )a
4
s(Q

2
2) +O(a5s(Q

2
2))

)
.

It is worth mentioning that the numerical results of Eq.(45) were previously presented in Ref.[29].
The magnitudes of their O(a2s) and O(a3s) coefficients are in agreement with the ones, received in Ref.[14] with

help of the generalized BLM and the large-nf expansion (see the related work of Ref. [16] where the numerical
expression for the related O(a4s) coefficient in Eq.(45) was found.

This expression should be compared with analogous one, which follows from the analytical form of the {β}-
decomposed representation of the Adler function, obtained and discussed in Refs.[34, 35]

Our expression (??) should be also compared with its counterpart following from the PMC-type considerations
of Refs.[23, 31, 40–43] with the {β}-non-expanded photon anomalous dimension :

D(Q2) = 3
∑
f

Q2
f

(
1 + as(Q̃

2
2) + (2.6042− 0.1528nf )a

2
s(Q̃

2
2) (46)

+ (9.7418− 2.0426nf − 0.0198n2f − 0.4132δf )a
3
s(Q̃

2
2)

+ (41.0141− 12.9110nf + 0.4887n2f + 0.0045n3f + (−2.3829− 0.0241nf )δf )a
4
s(Q̃

2
2) +O(a5s(Q̃

2
2)

)
,

where as before we do not specify the explicit form of the corresponding scale Q̃2
2, which does not coincide with Q2

2,

but has the related to Eq.(43) order a2s(Q̃
2
2) representation.

As we have already discussed above, the coefficients in the expression (46) are nf -dependent ones.
This essential difference of Eq.(46) from Eq. (45) is the consequence of the not applied {β}-expansion procedure

to the photon anomalous dimension γ(as) in the the papers of the members of the group of authors of Refs [23, 31, 40–
43].



This fact was critically commented by in Sec. 3 of this work.
For the sake of completeness, we also present here the numerical MS-scheme result for the Adler function, which

follows from obtained in [57, 58] and confirmed in [69] analytical O(a4s)-expression, written down in the numerical
form as

D(Q2) = 3
∑
f

Q2
f

(
1 + as(Q

2) + (1.9857− 0.1153nf )a
2
s(Q

2) (47)

+ (18.2427− 4.2158nf + 0.0862n2f − 0.4132δf )a
3
s(Q

2)

+ (135.7916− 34.4402nf + 1.8753n2f − 0.0101n3f + (−5.9422 + 0.1916nf )δf )a
4
s(Q

2) +O(a5s(Q
2
2)

)
.

It is worth clarifying that the leading large nf -contributions to Eq.(47) do agree with the numerical form of
analytical QED result, obtained previously in Ref.[62], but disagree with the analogous numbers, given in Eq.( 46)
above. This is the consequence of the PMC-related feature, that the non-properly non-expanded expression for
the photon anomalous dimension γ(as) is containing the bulk of the renormalon-related contributions, while the

remaining ones are absorbed into the O(a2s)-representation into not perfectly, to our minds, fixed scale Q̃2
2 of the

non-perfectly , to our minds, realizations of in general theoretically interesting, to our minds, idea of applying the
PMC-type expansion to the expression for the Adler function.

4.2 Energy dependence of the PMC/BLM and MS-scheme Adler function approxi-
mants.

4.2.1 PMC/BLM inputs.

Let us now specify what do we mean under the expression for the expansion parameters as(Q
2
0), as(Q

2
1) and as(Q

2
2)

in the next-to-leading order (NLO), next-to-next-to-leading order (N2LO) and next-to-next-to-next-to-leading order
( N2LO ) PMC/BLM Adler function approximants which are presented in Eqs.(37),(39) and Eq.(42) above.

In fact they are related to the given in Eq.(9.5) of the QCD PDG review of Ref.[81] of the MS-scheme QCD
coupling constant represntation through the inverse powers of ln(Q2/Λ(nf )2)-terms with Λ(nf ) being the MS-scheme
scale parameter, while the related NLO, N2LO and N3LO energy scales Q2

0, Q
2
1 and Q2

2 being fixed at the related
orders of these representations through the relatively applied PMC/BLM ways of their fixations, given in Eqs.(36),
(40), (43 with their numerical values of the parameters fixed at By Eqs.(44a-(44a) above.

In the concrete applications these ways of fixation can be re-written through the unique MS-scheme representa-
tion of the QCD coupling constant related to the arbitrary energy scale Q2, but with the appropriately re-defined
expressions of the MS-scheme scale parameters.

The related flavor-dependent expressions for the scale parameter of the PMC/BLM procedure, defined at the
NLO, N2LO and N3LO forms of the the corresponding scale-transformation expressions read:

Λ
(BLM)
NLO (nf ) = Λ

(nf )
NLO · exp

[
− 1

2
∆0

]
, (48a)

Λ
(PMC)
N2LO (nf ) = Λ

(nf )

N2LO · exp
[
− 1

2

(
∆0 + β0∆1(nf )a

NLO
s (Q2/(Λ

(BLM)
NLO )2)

)]
, (48b)

Λ
(PMC)
N3LO (nf ) = Λ

(nf )

N3LO · exp
[
− 1

2

(
∆0 + β0∆1(nf )a

N2LO
s (Q2/(Λ

(PMC)
N2LO )2) (48c)

+ β2
0∆2(nf )(a

N2LO
s (Q2/(Λ

(PMC)
N2LO )2))2

)]
,

where Λ
(nf )
NLO, Λ

(nf )

N2LO, Λ
(nf )

N3LO are the expressions for the QCD scale parameter defined in the MS-scheme in the
corresponding order of PT, while the parameters ∆0, β0∆1(nf ), β

2
0∆2(nf ) are defined by Eqs.(44a)- (44c) presented

above.
We will use the correspondingly truncated solutions of the RG-improved expressions for the running QCD coupling

as(Q
2) through the coefficients of the QCD β-function up to N3LO four-loop corrections, analytically evaluated in

Ref. [70] and confirmed in Ref.[71] and the inverse powers of ln(Q2/Λ(nf )2)-terms.



In the MS-scheme Λ(nf ) is the nf -dependent QCD scale parameter. Note, that its values are also sensitive to the
the order of the truncation of the corresponding approximations for the the QCD RG β-function with taking into
account its N2LO O(a3s) three-loop β2 coefficient and including the known at present its O(a5s) β5-term , analytically
evaluated in Ref.[72] and confirmed in Refs.[73, 74] . However, for the sake of consistency the order of truncation of
the a Adler function PT approximation we will not use this term below.

4.2.2 The MS-scheme benchmarks.

We will fix as the initial normalization point the τ -lepton pole mass Mτ = 1776.8 MeV, will consider nf = 3 number
of active flavours and will use the rounded strong coupling constant value αs(M

2
τ ) = 0.312, extracted in Ref.[75]

from the QCD sum rules analysis of the ALEPH Collaboration τ -lepton decay data. Despite the fact in view of the
qualitative aims of our studies to be presented below we will neglect the effects of the corresponding theoretical and
experimental uncertainties in not only this input number, we note, that this result of Ref.[75] falls into the bands of
the related results, independently obtained in Ref.[76] from the more detailed re-analysis of the same ALEPH data.

Considering now the properly truncated at the NLO, N2LO and N3LO representations αs(M
2
τ ) through the

inverse powers of logarithms from M2
τ /Λ

(3)2-ratio, we arrive to the following, of course rather rough, values for the
MS scale QCD parameter Λ(3) at nf = 3

Λ
(3)
NLO = 361 MeV , Λ

(3)
N2LO = 330 MeV , Λ

(3)
N3LO = 325 MeV.

To transform these them to the cases of nf = 4 and nf = 5 effective number of quarks flavours we will use the
expressions for the threshold transformation formulas from the works of Refs.[? ],[79],[80] with the corresponding

matching scales fixed at
√
Q2 = 2mc(m

2
c) = 2.54 GeV and

√
Q2 = 2mb(m

2
b) = 8.36 GeV. They are related to the

following values of the MS-scheme running c- and b-quark masses mc(m
2
c) = 1.27 GeV and mb(m

2
b) = 4.18 GeV,

which are taken from the PDG(2022) volume of Ref.[81].
Following these steps we obtain the related to the cases of nf = 4 and nf = 5 numbers of active flavours sets of

the numerical values of the MS-scheme scale parameter

Λ
(4)
NLO = 315 MeV , Λ

(4)
N2LO = 286 MeV , Λ

(4)
N3LO = 282 MeV

and

Λ
(5)
NLO = 223 MeV , Λ

(5)
N2LO = 205 MeV , Λ

(5)
N3LO = 203 MeV

The choice of the concrete threshold energies is also ambiguous and will introduce additional inaccuracies [82].
However, these effects are also not substantial for our aims and we will neglect them as well.

Using these values, the relations (48a-48c), the inverse logarithmic representation of strong coupling in the NLO,
N2LO, N3LO approximations and accommodating the explicit expressions for D(Q2) in the MS-scheme (47) and
within the PMC/BLM procedure we can get the corresponding energy dependence of the Adler function for the MS
and PMC/BLM approximants and to compare them with each other.

It was also checked that the evolution of the taken value αs(M
2
τ ) = 0.312 up to the mass MZ = 91.188 GeV [81]

of Z0-boson in QCD at the O(α4
s) level yields αs(M

2
Z)=0.1175. It is consistent with the results of the work [75] and

with the average value of PDG(2022) [81] within not taken into account uncertainties.

4.2.3 The phenomenologically relevant nf = 3 case.

To illustrate the characteristic behavior of the discussed approximants of the Adler function in the MS-scheme
and in the PMC/BLM approach in the case of nf = 3, we consider the chosen by us region of the Euclidean

transferred momentum 1.5 GeV ≤
√
Q2 ≤ 2.4 GeV, where the lower limit is slightly smaller than the τ -lepton mass

and the upper limit is a bit smaller than the twice charm-quark mass.
Note that in the Minkowskian time-like domain in the similar energy region 1.84 GeV ≤

√
s ≤ 3.88 GeV the

subprocess of the production of the light quark-antiquark u, d, s pairs dominates in the e+e− annihilation into hadrons
process. In this domain the experimental data for the total cross section of the discussed subprocess was extracted
from measurements provided by KEDR [83, 84] and BES III [85] Collaborations.

Taking into account the results of studies and benchmarks presented above, we obtain Figure 1a, demonstrating
the energy behavior of the NLO, N2LO and N3LO massless approximants for the Adler function in the MS-scheme



(47) and in the PMC/BLM approach . For comparison the Born quark-parton result 3
∑
Q2

f is presented there as
well.
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Figure 1: (1a) The dependence of the PT Adler function D(Q2) on
√

Q2 at nf = 3 in the massless limit.

(1b) The dependence of the factor exp(−∆/2) on
√

Q2 at nf = 3.

The Figure 1b shows the energy dependence of the factor exp(−∆/2), defining the rescaling effect of the MS
parameter Λ(nf ) after application of the PMC/BLM procedure in the considered orders of PT.

Let us comment the definite consequences following from the comparison of behaviour of various curves presented
in Figure 1a.

1. One can see that the NLO PT corrections to the Adler function are leading to the corrections, which are
quantitatively defining the main contribution to the Adler function in both MS and PMC/BLM cases.

2. While taking into account higher order PT corrections we observe the characteristic difference in the fine
structure of sets of MS-scheme and PMC/BLM approximants. Indeed, the MS results satisfy the inequalities
DBorn < DNLO(Q

2) < DN2LO(Q
2) < DN2LO(Q

2), whereas for PMC/BLM we have DBorn < DNLO(Q
2), but

DNLO(Q
2) > DN2LO(Q

2) and DN2LO(Q
2) < D(N3LO(Q

2).



3. It is interesting that the sign-structure of the related PT QCD expressions are changing from the pattern
+ +++ in the MS-scheme case to the pattern ++-+ N2LO in the PMC/BLM case.

4. The PMC/BLM approximants are located below the MS-ones. Together with the recent detailed phenomeno-
logically based analysis of the work of Ref. [86] and the less detailed described analysis of Refs.[87], [88] of
the previous e+e− to hadrons experimental data demonstrates that in the case of nf = 3 numbers of active
flavours taking into account massless PT QCD corrections within PMC/BLM procedure considerably increases
the deviations from the experimentally based results for the Adler function in the considered kinematical region.

Indeed, as it was shown in the works [86–88], in the considered low energy region
Meanwhile within MS the massive and ...other effects not taken

the incorporation of the quark mass effects (especially the charm-quark contributions) and the nonperturbative

corrections to the massless expression for PT Adler function increases noticeably its MS-value (say at
√
Q2 = 1.5 GeV

its magnitude rises on average by 15% [86]. )
Note, however, that it also has positive features. Indeed, in contrast to the case of the pure MS-scheme, in the

PMC/BLM approach we observe almost full independence of the Adler function on the energy scale in a concrete
order of perturbation theory.
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Appendix A.

The solution of the RG equation (6) for the photon vacuum polarization function can be found perturbatively
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and at the O(a4s) level it has the following form for both the NS and SI contributions:

ΠNS(L, as) = Π0 + γ0L+

(
Π1 + γ1L

)
as(µ

2) +

(
Π2 + (γ2 + β0Π1)L+

1

2
β0γ1L

2

)
a2s(µ

2) (49a)

+

(
Π3 + (γ3 + β1Π1 + 2β0Π2)L+ (β0γ2 +

1

2
β1γ1 + β2

0Π1)L
2 +

1

3
β2
0γ1L

3

)
a3s(µ

2)

+

(
Π4 + (γ4 + β2Π1 + 2β1Π2 + 3β0Π3)L+ (β1γ2 +

1

2
β2γ1 +

3

2
β0γ3 +

5

2
β0β1Π1 + 3β2

0Π2)L
2

+ (
5

6
β0β1γ1 + β2

0γ2 + β3
0Π1)L

3 +
1

4
β3
0γ1L

4

)
a4s(µ

2) + . . . ,

ΠSI(L, as) =

(
ΠSI

3 + γSI
3 L

)
a3s(µ

2) +

(
ΠSI

4 + (γSI
4 + 3β0Π

SI
3 )L+

3

2
β0γ

SI
3 L2

)
a4s(µ

2) + . . . (49b)



The explicit solution of the RG equation (14), expressed in terms of the PT coefficients of the photon vacuum
polarization function, its anomalous dimension and the RG β-function, reads:

DNS(L, as) = γ0 + γ1as(µ
2) +

(
γ2 + β0Π1 + β0γ1L

)
a2s(µ

2) (50a)

+

(
γ3 + β1Π1 + 2β0Π2 + (β1γ1 + 2β0γ2 + 2β2

0Π1)L+ β2
0γ1L

2

)
a3s(µ

2)

+

(
γ4 + β2Π1 + 2β1Π2 + 3β0Π3 + (2β1γ2 + β2γ1 + 3β0γ3 + 5β0β1Π1 + 6β2

0Π2)L

+ (3β2
0γ2 +

5

2
β0β1γ1 + 3β3

0Π1)L
2 + β3

0γ1L
3

)
a4s(µ

2) + . . . ,

DSI(L, as) = γSI
3 a3s(µ

2) +

(
γSI
4 + 3β0Π

SI
3 + 3β0γ

SI
3 L

)
a4s(µ

2) + . . . . (50b)



Appendix B.

Coefficients dk[. . . ].

Application of the {β}-decomposition procedure (??) to the PT series for the Adler function enables to obtain
the expressions for terms dk[. . . ] and d

SI
k [. . . ] in relations (18a-18f).

Within this procedure these terms were defined previously in Refs.[28, 29]. The scale-invariant contributions dk[0]
and dSI

k [0] satisfy the relations
dk[0] = γk[0], dSI

k [0] = γSI
k [0], (51a)

and terms γk[0], γ
SI
k [0] were fixed in Eqs.(23a), (23c), (23f), (23g), (23h).

The remaining scale non-invariant contributions to D(Q2)-function have the following analytical form:

d2[1] = d3[0, 1] = d4[0, 0, 1] =

(
33

8
− 3ζ3

)
CF , (51b)

d3[1] = d4[0, 1] =

(
− 111

64
− 12ζ3 + 15ζ5

)
C2

F +

(
83

32
+

5

4
ζ3 −

5

2
ζ5

)
CFCA, (51c)

d3[2] =
1

2
d4[1, 1] =

(
151

6
− 19ζ3

)
CF , (51d)

d4[1] =

(
− 785

128
− 9

16
ζ3 +

165

2
ζ5 −

315

4
ζ7

)
C3

F +

(
− 3737

144
+

3433

64
ζ3 −

99

4
ζ23 − 615

16
ζ5 (51e)

+
315

8
ζ7

)
C2

FCA +

(
− 2695

384
− 1987

64
ζ3 +

99

4
ζ23 +

175

32
ζ5 −

105

16
ζ7

)
CFC

2
A,

d4[2] =

(
− 4159

384
− 2997

16
ζ3 + 27ζ23 +

375

2
ζ5

)
C2

F +

(
14615

256
+

39

16
ζ3 −

9

2
ζ23 − 185

4
ζ5

)
CFCA, (51f)

d4[3] =

(
6131

36
− 203

2
ζ3 − 45ζ5

)
CF , (51g)

33dSI
4 [1] =

(
149

192
− 39

32
ζ3 +

15

16
ζ5 −

3

8
ζ23

)
dabcdabc

dR
. (51h)

The boxed analytical expressions are the obtained in Ref.[62] and presented in Ref.[7] MS chain diagram.

Coefficients d̃k[. . . ].

In the case when the photon vacuum polarization function and its anomalous dimension are not {β}-decomposed,
the counterparts of the expressions (23a), (23c), (23f), (23g), (23h), (51b-51h) were obtained in Refs.[23, 31, 40–42]



and read:

d̃1[0] = γ1 =
3

4
CF , (52a)

d̃2[0] = γ2 = − 3

32
C2

F +
133

192
CFCA −11

48
CFTFnf , (52b)

d̃2[1] = d̃3[0, 1] = d̃4[0, 0, 1] = Π1 =

(
55

16
− 3ζ3

)
CF , (52c)

d̃3[0] = γ3 = − 69

128
C3

F +

(
215

288
− 11

24
ζ3

)
C2

FCA +

(
5815

20736
+

11

24
ζ3

)
CFC

2
A (52d)

−
(
169

288
− 11

12
ζ3

)
C2

FTFnf −
(

769

5184
+

11

12
ζ3

)
CFCATFnf − 77

1296
CFT

2
Fn

2
f ,

d̃3[1] = d̃4[0, 1] = Π2 =

(
− 143

96
− 37

8
ζ3 +

15

2
ζ5

)
C2

F +

(
44215

3456
− 227

24
ζ3 −

5

4
ζ5

)
CFCA (52e)

−
(
3701

864
− 19

6
ζ3

)
CFTFnf ,

d̃3[2] = d̃4[2] = d̃4[3] = 0, (52f)

d̃4[0] = γ4 =

(
4157

2048
+

3

8
ζ3

)
C4

F −
(
7755

1024
+

71

16
ζ3 −

935

128
ζ5

)
C3

FCA +

(
882893

110592
(52g)

+
11501

4608
ζ3 +

121

256
ζ4 −

2145

256
ζ5

)
C2

FC
2
A −

(
1192475

663552
− 5609

4608
ζ3 +

121

256
ζ4

− 825

512
ζ5

)
CFC

3
A +

(
2509

1536
+

67

32
ζ3 −

145

32
ζ5

)
C3

FTFnf −
(
66451

18432
− 2263

1152
ζ3

+
143

128
ζ4 −

255

64
ζ5

)
C2

FCATFnf +

(
22423

41472
− 9425

2304
ζ3 +

143

128
ζ4 +

45

128
ζ5

)
CFC

2
ATFnf

+

(
4961

13824
− 119

144
ζ3 +

11

32
ζ4

)
C2

FT
2
Fn

2
f −

(
8191

41472
− 563

576
ζ3 +

11

32
ζ4

)
CFCAT

2
Fn

2
f

+

(
107

10368
+

1

72
ζ3

)
CFT

3
Fn

3
f +

(
3

16
− 1

4
ζ3 −

5

4
ζ5

)
dabcdF dabcdA

dR

−
(
13

16
+ ζ3 −

5

2
ζ5

)
dabcdF dabcdF

dR
nf ,

d̃4[1] = Π3 =

(
− 31

256
+

39

32
ζ3 +

735

32
ζ5 −

105

4
ζ7

)
C3

F −
(
382033

27648
+

46219

1152
ζ3 +

11

64
ζ4 (52h)

− 9305

192
ζ5 −

105

8
ζ7

)
C2

FCA +

(
34499767

497664
− 147473

3456
ζ3 +

55

8
ζ23 +

11

64
ζ4 −

28295

1152
ζ5

− 35

16
ζ7

)
CFC

2
A −

(
7505

13824
− 1553

72
ζ3 + 3ζ23 − 11

32
ζ4 +

125

6
ζ5

)
C2

FTFnf

−
(
5559937

124416
− 41575

1728
ζ3 −

1

2
ζ23 +

11

32
ζ4 −

515

36
ζ5

)
CFCATFnf

+

(
196513

31104
− 809

216
ζ3 −

5

3
ζ5

)
CFT

2
Fn

2
f

(52i)



d̃SI
3 [0] = γSI

3 =

(
11

192
− 1

8
ζ3

)
dabcdabc

dR
, (52j)

d̃SI
4 [0] = γSI

4 =

((
− 13

64
− 1

4
ζ3 +

5

8
ζ5

)
CF +

(
1015

3072
− 659

1024
ζ3 +

33

256
ζ4 +

15

256
ζ5

)
CA (52k)

+

(
− 55

768
+

41

256
ζ3 −

3

64
ζ4 −

5

64
ζ5

)
TFnf

)
dabcdabc

dR
, (52l)

d̃SI
4 [1] = ΠSI

3 =

(
431

2304
− 63

256
ζ3 −

1

8
ζ23 − 3

64
ζ4 +

15

64
ζ5

)
dabcdabc

dR
, (52m)

(52n)

where dSI
3 = d̃SI

3 [0] and dSI
4 = d̃SI

4 [0] + 3β0d̃
SI
4 [1].

The sum of the single, double and triple and analytical expressions coincie with the boxed analytical expressions
presented in Abstract In fact the second terms from these pairs of boxed terms were absorbed in non-properly fefined
in eqs PMC scales while the remaing boxed analtical values are still remaining in the non-beta expanded anonalous
deimension Therefore whiloe not considering we are parts of renormalon effects while in the expanded case all of
them are really containedv in the PMC scales
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