B. I. Ermolaev

On the recent polemics on Structure Function g_{1} at small x

talk based on results obtained in collaboration with M.Greco and S.I. Troyan

Consider lepton-hadron DIS.
The spin-dependent part of the hadronic tensor is parameterized by two structure functions:

$$
W_{\mu \nu}{ }^{\text {spin }}=i \varepsilon_{\mu \nu \lambda \rho} \boldsymbol{m}_{h}\left(\boldsymbol{q}_{\lambda} / P q\right)\left[S_{\rho} g_{1}\left(x, Q^{2}\right)+\left(S_{\rho}-P_{\rho}\right)\left(S q / q^{2}\right) g_{2}\left(x, Q^{2}\right)\right]
$$

Structure Functions

where m_{h}, P and S are the hadron mass, momentum and spin; q is the virtual photon momentum ($\left.Q^{2}=-q^{2}>0\right)$. Both of the functions depend on Q^{2} and $x=Q^{2} / 2 p q, \quad 0<x<1$.

The only theoretical instrument to calculate $g_{1}\left(x, Q^{2}\right)$ and $g_{2}\left(x, Q^{2}\right)$ is QCD It involves integration over virtual parton momenta over the whole phaze space

However, QCD can be applied at large momenta only. The low momenta region is accounted for approximately through QCD FACTORIZATION

There are well-known the following kinds of QCD Factorization in the literature:

Collinear Factorization
Amati-Petronzio-Veneziano, Efremov-Ginzburg-Radyushkin, Libby-Sterman, Brodsky-Lepage, Collins-Soper-Sterman
K_{T} - Factorization/High-Energy Factorization
S. Catani - M. Ciafaloni - F. Hautmann
J.C. Collins, R.K. Ellis

These conventional forms of Factorization were introduced from different considerations and are used for different perturbative approaches

Recently a new, more general type of Factorization appeared: Basic Factorization Step-by-step it can be reduced first to K_{T} and and then to Collinear Factorizations Ermolaev-Greco-Troyan

QCD FACTORIZATION

Non-pert inputs cannot contain terms $\sim 1 / x$

Long discussions with A.V. Efremov

$$
g_{1,2}=g_{1,2}^{\text {quark }} \otimes \Phi_{\text {quark }}+g_{1,2}^{\text {gluon }} \otimes \Phi_{\text {gluon }}
$$

Expression for g_{1} look simpler in Mellin representation

Expression for singlet g_{1} is similar but more complicated
singlet:
$g_{1}^{s_{1}}\left(x, Q^{2}\right)=\int_{-i \infty}^{i \infty} \frac{d \omega}{2 \pi i} x^{-\omega}\left(C^{(+)} e^{y \Omega_{(+)}}+C^{(-)} e^{y \Omega_{(+)}}\right) \quad \boldsymbol{\Phi}_{q}(\omega)$

$$
\int_{-i \infty}^{i \infty} \frac{d \omega}{2 \pi i} x^{-\omega}\left(\widetilde{C}^{(+)} e^{y \Omega_{(+)}}+\widetilde{C}^{(-)} e^{y \Omega_{(+)}}\right) \Phi_{g}(\omega)
$$

$\boldsymbol{\Omega}_{(\pm)}(\boldsymbol{\omega})$ are made of anomalous dimensions Initial gluon distribution

$$
\boldsymbol{h}_{(q q)}(\boldsymbol{\omega}), \boldsymbol{h}_{(q g)}(\boldsymbol{\omega}), \boldsymbol{h}_{(g q)}(\boldsymbol{\omega}), . \boldsymbol{h}_{(g g)}(\boldsymbol{\omega})
$$

In the DGLAP framework Dokshitzer- Gribov- Lipatov- Altarelli - Parizi
$\boldsymbol{C}^{(\pm)}(\boldsymbol{\omega}), \widetilde{\boldsymbol{C}}^{(\pm)}(\boldsymbol{\omega}), \boldsymbol{\Omega}_{(\pm)}(\boldsymbol{\omega})$ were calculated first in fixed orders in α_{s}

Later, both coefficient functions and anomalous dimensins for g_{1} were calculated in double- logarithmic approximation:

Bartels - Ermolaev - Ryskin fixed α_{s}
Ermolaev - Greco - Troyan running α_{s}
There were obtained both explicit expressions for g_{1} and the small-x asymptotics for both flavor singlet and non-singlet.

Double-Logarithmic Approximation

Example: elastic forward scattering amplitude:

$$
M(s)=M^{B o r n}\left[1+c_{1} \alpha_{s} \ln ^{2} s+c_{2}\left(\alpha_{s} \ln ^{2} s\right)^{2}+c_{3}\left(\alpha_{s} \ln ^{2} s\right)^{3}+\ldots \cdot\right]
$$

Structure function g_{1} depends on two arguments, so DLA accounts for the terms

$$
\sim \alpha_{s}^{n} \ln x^{2 n-1-k} \ln ^{k} Q^{2} \quad 0 \leq k<n, \quad n=1,2, \ldots
$$

In the $\boldsymbol{\omega}$-space

$$
C_{N S}=1+\frac{c_{1}}{\omega^{2}}+\frac{c_{2}}{\omega^{4}}+\ldots \quad h_{N S}=\frac{c_{1}}{\omega}+\frac{c_{2}}{\omega^{3}}+\ldots
$$

DLA accounts for the contributions most singular at $\boldsymbol{\omega} \rightarrow \mathbf{0}$
Applying the Saddle Point method to expressions for $g_{1}{ }^{N S}$ and $g_{1} S$ allowed us to obtain the small-x asymptotics

They proved to be of the Regge kind and their intercepts are the rightmost singularities:

Small-x asymptotics at $x \ll 1$ and $Q^{2} \gg \mu^{2}$

singlet

$\mu \approx 1 \mathrm{GeV}$

\downarrow

Asymptotic scaling

$$
g_{1}{ }^{N S} \sim\left(Q^{2} / x^{2}\right)^{\Delta_{N S} / 2} \quad g_{1}{ }^{S} \sim\left(Q^{2} / x^{2}\right)^{\Delta_{S} / 2}
$$

when α_{s} is kept fixed the intercept are:
$\Delta_{N S} \approx \omega_{+}\left[\frac{1+\left(1+4 /\left(N^{2}-1\right)\right)^{1 / 2}}{2}\right]^{1 / 2} \approx \omega_{+}\left(1+1 / 2 N^{2}\right)^{1 / 2}$
$\omega_{+}=\left(2 \alpha_{s} C_{F} / \pi\right)^{1 / 2}$

Ermolaev- Manaenkov - Ryskin

$$
C_{F}=\left(N^{2}-1\right) / 2 N, \quad N=3
$$

WARNING: α_{s} is fixed at unknown scale Mostly, the DGLAP parametrization $\alpha_{s}=\alpha_{s}\left(Q^{2}\right)$ is used, which is incorrect at small x

When quark contributions to g_{1} singlet are neglected, the intercept grows:
Pure gluon g_{1} singlet intercept $\Delta_{\text {gluon }}=3.66\left(\alpha_{s} N / 2 \pi\right)^{1 / 2}$

$$
\text { Represent } \quad \Delta_{\text {gluon }}=z_{h}\left(\alpha_{s} N / 2 \pi\right)^{1 / 2} \text { with } \quad z_{h}=3.66
$$

RUNNUNG COUPLING:

When α_{s} is running, the intercepts can be found numerically only:

$$
\Delta_{N S}=0.42
$$

$$
\Delta_{S}=0.85
$$

NB Pretty close to the value obtained by extrapolating HERA data to small x
Kochelev-Lipka-Nowak-Vento-Vinnikov

CRITICISM and ALTERNATIVE CALCULATIONS of SINGLET INTERCEPT

Interest to theoretical investigation of g_{1} increased in 2015 when
Kovchegov-Pitonyak-Sievert 2015
investigated small-x asymptotics of helicity in DLA with
α_{s} in the ladder approximation. They confirmed our previous result on Intercept non-singlet structure function F_{1}

Ermolaev-Manaenkov-Ryskin, 1995

Next year they included in consideration non-ladder graphs, obtaining thereby intercept of g_{1} and arrived at a huge Disagreement with the result

Bartels- Ermolaev -Ryskin, 1996

They considered purely gluon DL contributions and represented their result on the intercept as follows:

$$
\tilde{\Delta}_{\text {gluon }}=\tilde{z}_{h}\left(\alpha_{s} N / 2 \pi\right)^{1 / 2}
$$

while our result is

Publishing such huge discrepancy provoked an extensive interest in the matter, so many authors contributed to this issue, namely

Kovchegov, Pitonyak, Sievert, Borden, Adamiak, Yossathom, Tawabutr, Santiago, Tarasov, Venugoplan, Chirilli, Gougoulic, Nayan Mani Nath, Jayanta Kumar Sarma, Zhou, ..

These authors also studied small- x evolution of helicity, using the JIMWLK -approach
Jalilian-Marian, Iancu, McLerran, Weigert,,Leonidov, Kovner

However, JIMWLK originally was designed for evolution of unpolarized objects, so
Kovchegov- Pitonyak - Sievert
generalized it to study the helicity evolution and other authors also developed various modifications of JIMWLK trying to obtain most accurate estimates of $\boldsymbol{Z}_{\boldsymbol{h}}$

This polemics continued till 2023

As a results of this polemics of 2016-2023, the first estimate of 2016 (called KPS-evolution) Kovchegov- Pitonyak - Sievert

was drastically corrected by
Kovchegov- Pitonyak - Sievert - Cougoulic- Tarasov- Tawabutr
when they constructed KSPIT evolution equation instead of KPS. Their estimate of 2023 is
$z_{h}=3.66$

which coincides with BER result of 1996

However, recently accuracy of calculations in the framework of KPSCTT evolution was increased, so same authors (e.g. Tawabutr) have concluded that there still remains a small disagreement

The newest estimate :

Although the discrepancy is small, the authors of KPSCTT think that it requires further study

Comparison of KPSCTT and IREE approaches

KPSCTT

Based on JIMWLK equation which is based on BFKL

Intended to calculate small-x asymptotics of various objects with polarized partons

Operates with fixed $\boldsymbol{\alpha}_{\boldsymbol{s}}$ only and because of that the obtained expressions for the intercepts contain α_{s}

IREE

Based on evolution in Infra-Red cut off
Intended to calculate
various objects in DLA, unpolarized and polarized partons

Operates with fixed and running α_{s}, so Intercepts do not contain α_{s} explicitly

ONSET of IREE

This method was invented by L.N. Lipatov . It stems from the observation that the bremsstrahlung photon with minimal transverse momentum (the softest photon) can be factorized out of the radiative amplitudes with DL accuracy V.N. Gribov

Similarly, DL contributions of softest virtual quarks/gluons can be factorized
DL contributions of soft gluons are infrared (IR)-divergent. When quark masses are neglected, DL contributions from soft quarks also become IR-divergent.

In order to regulate them, one can introduce an IR cut-off $\boldsymbol{\mu}$
Lipatov suggested to introduce it in the transverse momentum space. It makes possible to use the factorization obtained by Gribov.

After factorizing the softest quarks and gluons, their transverse momenta act as a new IR cut-off, instead of μ, for integrating over momenta of other virtual partons.

Value of μ obeys the restriction $\mu \ll \Lambda_{Q C D}$ in order to allow applying Perturbative QCD, otherwise it is arbitrary. This makes possible to evolve the objects under consideration with respect to μ

It is the reason why the method is named IREE. (M.Krawczyk) The method proved to be effective and simple instrument for calculations in Double-Logarithmic Approximation (DLA), i.e. when contributions

$$
\sim \alpha_{s}^{n} \ln x^{2 n-1-k} \ln ^{k} Q^{2} \quad(n=1,2, \ldots)
$$

are accounted to all orders in α_{s}
At the beginning, IREE operated with fixed α_{s} but later the running coupling effects were incorporated (Ermolaev-Greco-Troyan)

Now we demonstrate how to construct IREEs for perturbative components of g_{1}

Constructing IREEs for $g_{1}^{(q)}$ and $g_{1}^{(g)}$:

All intermediate \dagger-channel partons have minimal transverse momenta and are called softest

Only two-parton intermediate states yield DL contributions
$g_{1}{ }^{(q)}$ and $g_{1}{ }^{(g)}$ are expressed through themselves and new parton-parton amplitudes $\boldsymbol{H}_{\boldsymbol{i} \boldsymbol{j}}$

In turn, $\boldsymbol{H}_{\boldsymbol{i j}}$ can also be obtained with constructing IREEs. For instance, consider IREE for quark-quark amplitude $\boldsymbol{H}_{\boldsymbol{q q}}$

Object in frame is t-channel color singlet, so the blob is t-cannel octet

These terms

have opposite signs and because of that they kill each other in the case of unpolarized structure functions
However, in the case of g_{1} they have equal signs

Vanishing DL contributions from 2 ->2 non-ladder graphs with positive signature was first noticed in the QED context by Gorshkov-Lipatov-Nesterov

Singlet g_{1} involves four octets: $\begin{array}{lllll}V_{q q} & V_{q g} & V_{g q} & V_{g g}\end{array}$

NB The main technical problem of KPSCTT approach was including non-ladder graphs in consideration because its parent equation, JIMWLK was designed for studying unpolarized processes, where DL come from ladders only

In contrast, IREE approach accounts for non-ladder graphs through introducing octets, which is much simpler technically
For instance

For practical needs $V_{q q}$ is often approximated by its Born value

$$
V_{q q}(\omega) \approx-2 \pi \alpha_{s} / N \omega
$$

Comparison KPSCTT with IREE

KPSCTT main feature

IREE

For implications, It is important to know what is applicability region for asymptotics

Applicability region of Regge asymptotics
Ermolaev-Greco-Troyan
Regge asymptotics are given by simple and elegant expressions. However the applicability regions of the asymptotics are poorly known

Asymptotics

We introduce $\boldsymbol{R}_{a s}(\boldsymbol{x})=\boldsymbol{A s}\left(\boldsymbol{g}_{1},\right) / \boldsymbol{g}_{1}$
and numerically study its x-dependence at fixed \mathbf{Q}^{2}

Asymptotics reliably represent $F_{1,2, L}$ when $\boldsymbol{R}_{\text {as }}$ is close to 1 . Numerical analysis yields

$$
\begin{aligned}
& x=10^{-3} R_{A S} \approx 0.5 \quad \text { Applicability region for asymptotics } \\
& x=10^{-4} R_{A S} \approx 0.7 \\
& x=10^{-6} R_{A S} \approx 0.9
\end{aligned}
$$

Spin-dependent Pomeron

Asymptotics of spin-dependent structure function \mathbf{g}_{1} is $\boldsymbol{x}-\boldsymbol{\omega}_{\mathbf{0}}$ with $\boldsymbol{\omega}_{\mathbf{0}}=\mathbf{0 . 8 6}<\mathbf{1}$ Ermolaev-Greco-Troyan and the applicability region is $\quad \mathrm{x} \gg \boldsymbol{x}_{0}=\mathbf{1 0}^{-6}$

Using asymptotics at $\mathrm{X}>\boldsymbol{x}_{\boldsymbol{o}}$ means $\boldsymbol{x}^{-a} \approx \boldsymbol{x}_{0}{ }^{-\Delta}$
For instance, choose $x=10^{-4} \square a \approx \Delta \frac{\ln x_{0}}{\ln x}=0.86 \frac{\ln x_{0}}{\ln x}$

$$
a=0.86 \frac{6}{4}=1.29
$$

Spin-dependent Pomeron i.e. Illegal usage of asymptotics

CONCLUSIONS

Polemics on intercept of g_{1} started in 2016 is now over.
It resulted in constructing KPSCTT evolution equation to replace JIMWLK
As a result, BER estimate of the intercept proved to be correct save small fraction

Ways to increase accuracy of calculating the intercept of g_{1} within IREE approach

Go beyond the Born approximation for the octets
Account for single-logarithmic contributions

