

Ordinary Muon Capture (OMC)

(*E*, *t*) distribution of the correlated events following μ -capture in ⁷⁶Se target

3

(*E*, *t*) distribution of the correlated events following μ -capture in ⁷⁶Se target

Time evolution of the intensities of the strongest γ -lines following OMC in ⁷⁶Se (top) μ ^{nat}Se (bottom).

Total µ-capture rates in different isotopes of Se

Time evolution of the intensities of the strongest γ -lines following OMC in ⁷⁶Se (top) μ ^{nat}Se (bottom) ^{(A}.

^{A)} D. Zinatulina, V. Egorov et al. // Phys. Rev. C 99(2019)024327

^{B)} T. Suzuki, D.F. Measday // Phys. Rev. C 35(1987)2212

Energy spectra in OMC

- > $t_{\mu\gamma} = 0.50$ ns: μ X-cascades (**Prompt** spectra) normalization, identification, composition of the surrounded materials and target itself;
- > $t_{\mu\gamma}$ = 50-700 ns: γ -radiation following OMC (**Delayed** spectra) partial μ -capture rates strength function of the right side;
- > T >> $t_{\mu\gamma}$: background radiation (**Uncorrelated** spectra) calibration of the det-s, identification, yields of short-lived RI during exposure

Detector efficiencies and timing

μX-rays from Au, Cd, Sm

8

charge collection

What do we need for the extraction partial caprates for

OMC?

- Cascade of the muonic X-rays
- ➢ Efficiency
- Total capture rates
- Good identification of the gammas
- Time window for the **delayed** spectra

Results measured with U-spectra in ⁷⁶Se

Background radiation (**Uncorrelated** spectra) –

- calibration of the det-s,
- ➢ identification,
- yields of short-lived RI during exposure

Isotope	Type of decay	T _{1/2}	Λ _{cap} (xn yp) [10 ⁶ c ⁻¹]	P _{cap} [%]		
$^{76}\mathrm{As}$	β-	26.3 h	1.45(11)	13.65(255)		
^{75m} As	IT	17.6 µs	1.80(31)	6.5(11)		
⁷⁵ As	sta	able	Not measured			
⁷⁴ As	β ⁻ , EC	17.8 d	1.1(2)	17.5(32)		
^{73}As	EC	80.3 d	Not me	ot measured		
⁷² As	β+	26 h	0.15(3)	2.4(5)		
⁷¹ As	β+	65.3 h	0.061(18)	0.96(28)		
^{75m} Ge	IT	48 s	0.047(13)	0.75(21)		
⁷⁵ Ge	β-	82.8 min	0.054(2)	0.86(3)		
^{71m} Ge	IT	20 µs	0.020(3)	0.32(5)		
⁷⁴ Ga	β-	8.1 min	0.026(6)	0.40(9)		
⁷² Ga	β-	14.1 h	0.026(7)	0.40(11)		
				∑=43.7(43)		

Results measured with U-spectra in ⁷⁶Se

Background radiation (**Uncorrelated** spectra) –

- calibration of the det-s,
- ➢ identification,
- yields of short-lived RI during exposure

Isotope] 0 c	Type of lecay	T _{1/2}	Λ _{cap} (xn yp [10 ⁶ c ⁻¹])	P _{cap} [%]	
⁷⁶ As		β-	26.3 h	1.45(11)		13.65(255)	
^{75m} As		IT	17.6 µs	1.80(31)		6.5(11)	
⁷⁵ As		sta	able	Not meas		asured	
⁷⁴ As	Ą	⁵⁻ , EC	17.8 d	1.1(2)	Γ	17.5(32)	
⁷³ As		EC	80.3 d	Not r	ne	asured	
⁷² As		β+	26 h	0.15(3)		2.4(5)	
⁷¹ As		β+	65.3 h	0.061(18)		0.96(28)	
^{75m} Ge		IT	48 s	0.047(13)		0.75(21)	
⁷⁵ Ge		β-	82.8 min	0.054(2)		0.86(3)	
^{71m} Ge	Τ	IT	20 µs	0.020(3)		0.32(5)	
⁷⁴ Ga		β-	8.1 min	0.026(6)		0.40(9)	
⁷² Ga		β-	14.1 h	0.026(7)		0.40(11)	
						∑=43.7(43)	

Ordinary muon capture studies for the matrix elements in $\beta\beta$ decay

D. Zinatulina,¹ V. Brudanin,¹ V. Egorov,¹ C. Petitjean,² M. Shirchenko,¹ J. Suhonen,³ and I. Yutlandov¹

 ¹ Joint Institute for Nuclear Research, 141980 Dubna, Russia
 ² Paul Scherrer Institute, 5232 Villigen, Switzerland
 ³ Department of Physics, University of Jyväskylä, PO Box 35, FIN-40351 Jyväskylä, Finland (Dated: October 16, 2018)

Precise measurement of γ -rays following ordinary (non-radiative) capture of negative muons by natural Se, Kr, Cd and Sm, as well as isotopically enriched ⁴⁸Ti, ⁷⁶Se, ⁸²Kr, ¹⁰⁶Cd and ¹⁵⁰Sm targets was performed by means of HPGe detectors. Energy and time distributions were investigated and total life time of negative muon in different isotopes was deduced. Detailed analysis of γ -lines intensity allows to extract relative yield of several daughter nuclei and partial rates of (μ,ν) capture to numerous excited levels of the ⁴⁸Sc, ⁷⁶As, ⁸²Br, ¹⁰⁶Ag and ¹⁵⁰Tc isotopes which are considered to be virtual states of an intermediate odd-odd nucleus in 2β -decay of ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁶Cd and ¹⁵⁰Nd, respectively. These rates are important as an experimental input for the theoretical calculation of the nuclear matrix elements of 2β -decay.

PACS numbers: 23.40.-s, 23.40.Hc, 27.40.+z, 27.50.+e, 27.60.+j, 27.70.+q

I. INTRODUCTION

At the moment the neutrinoless $\beta\beta$ ($0\nu\beta\beta$) decay of atomic nuclei is the only practical means of accessing the Majorana nature of the neutrino. In order to occur the decay requires the violation of lepton-number conservation and non-zero neutrino mass. Due to the importance of the related beyond-the-standard-model physics it is of interest to study the nuclei involved by both experimental and theoretical means. Large experimental collaborations have been established in order to measure the $0\nu\beta\beta$ half-lives in the presently running and future underground experiments. The connection between the (possibly) measured half-lives and the fundamental observables, like the electron neutrino mass, is provided by the nuclear matrix elements (NMEs) [1].

Nuclear models aimed at the description of the NMEs of $0\nu\beta\beta$ decays have traditionally been tested in connection with the two-neutrino $\beta\beta$ ($2\nu\beta\beta$) decays [1, 2] and β decays [3]. In [4] it was proposed that the ordinary muon capture (OMC) could be used for this purpose, as well. The $2\nu\beta\beta$ and β decays are low-momentum exchange processes ($q \sim \text{few MeV}$), whereas both $0\nu\beta\beta$ and OMC are high-momentum exchange processes ($q \sim 100$ MeV). In this way the $0\nu\beta\beta$ and OMC are similar processes and possess similar features: they are able to excite high-lying nuclear states with multipolarities J^{π} higher than $J^{\pi} = 1^+$. The $0\nu\beta\beta$ decay proceeds between the 0^+ ground states of parent and daughter even-even nuclei through virtual states of the intermediate odd-odd nucleus. These same virtual states can be accessed by the

the processes stemming, e.g., from the neutrino potential generated by the propagator of the virtual Majorana neutrino in the $0\nu\beta\beta$ decay [5]. Despite this difference the OMC can effectively probe the nuclear wave functions relevant for the $0\nu\beta\beta$ decay, as shown for the light nuclei in the shell-model framework in [6].

For the medium-heavy and heavy open-shell nuclei the shell-model framework is unfeasible due to computational limitations. For these nuclei the model framework of the quasiparticle random-phase approximation (QRPA [7] is a good choice. In particular, the proton-neutron version of the QRPA (pnQRPA) can access the virtual intermediate states of the $0\nu\beta\beta$ decays [1]. A particular problem pestering the pnQRPA approach is the uncertainty associated with one of its key parameters, the particleparticle interaction strength g_{pp} . This parameter is used to introduce a phenomenological overall scaling of the particle-particle part of proton-neutron interaction [8]. It is not clear how this scaling should be done for the $0\nu\beta\beta$ decays since there is no experimental data for transitions from either the $0\nu\beta\beta$ mother or daughter nuclei to the multipole $J^{\pi} \neq 1^+, 2^-$ intermediate states (the 1^+ and partly 2^- states can be probed by the (p, n) and (n, p) charge-exchange reactions [9]). In this case the only viable method to access this " $g_{\rm pp}$ problem" is the OMC [10]. By using experimental data on OMC to individual intermediate J^{π} states one can access the value of $g_{\rm DD}$ for each multipole separately and at the same time study the consistency of these values by comparison with the measured OMC rates for a wider palette of nuclear states.

In order to give an experimental input to 2β NME cal

<u>arXiv:</u> 1803.10960v2

URL: <u>http://muxrays.jinr.ru/</u>

Измерено более 75 химических элементов, PSI, µE1 и µE4

Total μ X-ray spectrum of Cd

Год исследования: 2002 Обогащение: 95.8% Состав: ТіО₂ порошок Количество: 1.0 г

Полные скорости µ-захвата в ⁴⁸Ті

Парциальные вероятности µ-захвата ⁴⁸Sc

3216.1 -		<3	Р _ј , % от Λ_{cap}	Р _ј , относит.	J.Suhonen et al.
3149.9 = 3056.5 = 3026.2 = 2980.8 = 2811.2 = 2783.3 = 2729.0 = 2670.3 = 2640.1 = 2517.3 = 2275.48 = 2190.46 = 1891.06 = 1401.69 = 1142.57 = 275.48 = 2190.46 = 1891.06 = 1401.69 = 1142.57 = 275.48 = 2190.46 = 1891.06 = 1401.69 = 1142.57 = 200.46 = 1891.06 = 1401.69 = 1142.57 = 200.46 = 1891.06 = 1401.69 = 1142.57 = 200.46 = 1891.06 = 1401.69 = 1142.57 = 200.46 = 1891.06 = 1401.69 = 1142.57 = 200.46 = 1891.06 = 1401.69 = 1142.57 = 200.46 = 1800.000 = 200.0000 = 200.000 = 200.000 = 200.000 = 200.000 = 200.000 = 200.000 = 200.0000 = 200.0000 = 200.0000 = 200.0000 = 200.0000 = 200.0000 = 200.0000 = 200.0000 = 200.0000 = 200.0000 = 200.0000 = 200.0000 = 200.0000 = 200.0000 = 200.0000 = 200.0000 = 200.0000 = 200.00000 = 200.00000 = 200.00000 = 200.00000 = 200.000000 = 200.000000 = 200.0000000000		1+ 1+ 2,3 1+ 1,2,3 2+ 4+,5+ 1-,2- 1,2- 2+ 3- 2- 2+ 3- 2- 2+ 3- 2-	 0.14 (8) 0.45 (24) 1.175 (717) 0.53 (29) 0.47 (33) 0.19 (8) 0.19 (6) 1.056 (328) 0.52 (23) 0.71 (42) 0.55 (32) 0.11 (6) 1.136 (707) 1.125 ((777) 	0.118 0.379 0.991 0.447 0.397 0.160 0.160 0.891 0.439 0.599 0.464 0.093 0.959 1.000	0.011 0.102 0.128 0.080 0.050 0.195 1.000
622.64 252.35 130.94 0	4 ⁸ Sc	3+ 3+ 4+ 5+ 6+ β-	1.185 (677) ΟΟΟΣ 4 ⁸ Ti	$P_j(\%) = 8.4$	0 (157))+ 22