On the importance of muon capture for neutrinoless double-beta decay studies

Javier Menéndez

University of Barcelona and Institute of Cosmos Sciences

May 24th 2023

Creation of matter in nuclei: $0\nu\beta\beta$ decay

Lepton number is conserved in all processes observed:

single β decay, $\beta\beta$ decay with neutrino emission... Uncharged massive particles like Majorana neutrinos (ν) allow lepton number violation:

neutrinoless $\beta\beta$ decay two matter particles (electrons) created

Agostini, Benato, Detwiler, JM, Vissani, Rev. Mod. Phys. in press, arXiv:2202.01787

Nuclear matrix elements for new-physics searches

Neutrinos, dark matter studied in experiments using nuclei

Nuclear structure physics encoded in nuclear matrix elements key to plan, fully exploit experiments

$$\begin{split} &0\nu\beta\beta: \left(T_{1/2}^{0\nu\beta\beta}\right)^{-1} \propto g_A^4 \left| M^{0\nu\beta\beta} \right|^2 m_{\beta\beta}^2 \\ &\text{Dark matter: } \frac{\mathrm{d}\sigma_{\chi\mathcal{N}}}{\mathrm{d}\boldsymbol{q}^2} \propto \left| \sum_i c_i \zeta_i \mathcal{F}_i \right|^2 \\ &\text{CE}\nu\mathrm{NS: } \frac{\mathrm{d}\sigma_{\nu\mathcal{N}}}{\mathrm{d}\boldsymbol{q}^2} \propto \left| \sum_i c_i \zeta_i \mathcal{F}_i \right|^2 \end{split}$$

 $M^{0\nu\beta\beta}$: Nuclear matrix element \mathcal{F}_{i} : Nuclear structure factor

Next generation experiments: inverted hierarchy

Decay rate sensitive to neutrino masses, hierarchy $m_{\beta\beta} = |\sum U_{ek}^2 m_k|$

$$V \quad T_{1/2}^{0\nu\beta\beta} \left(0^+ \to 0^+ \right)^{-1} = G_{0\nu} \, g_A^4 \left| M^{0\nu\beta\beta} \right|^2 \left(\frac{m_{\beta\beta}}{m_e} \right)^2$$

Matrix elements assess if next generation experiments $f_{4}|_{Y_{5}}$ explore "inverted hierarchy"

KamLAND-Zen, PRL117 082503(2016)

Uncertainty in physics reach of $0\nu\beta\beta$ experiments

Agostini, Benato, Detwiler, JM, Vissani Phys. Rev. C 104 L042501 (2021) 5/15 Nuclear matrix element theoretical uncertainty critical to anticipate $m_{\beta\beta}$ sensitivity of future experiments

Current uncertainty in $m_{\beta\beta}$ prevents to foresee if next-generation experiments will fully cover parameter space of "inverted" neutrino mass hierarchy

Uncertainty needs to be reduced!

Nuclear matrix elements

Nuclear matrix elements needed in low-energy new-physics searches

$$raket$$
 Final $|\mathcal{L}_{ ext{leptons-nucleons}}|$ Initial $angle=raket$ Final $|\int dx\, j^\mu(x) J_\mu(x)|$ Initial $angle$

- Nuclear structure calculation of the initial and final states: Shell model, QRPA, IBM, Energy-density functional Ab initio many-body theory QMC, Coupled-cluster, IMSRG...
- Lepton-nucleus interaction: Hadronic current in nucleus: phenomenological, effective theory of QCD

Tests of nuclear structure

Spectroscopy well described: masses, spectra. transitions. knockout...

Schiffer et al. PRL100 112501(2009) Kay et al. PRC79 021301(2009)

Szwec et al., PRC94 054314 (2016)

Rodríguez et al. PRL105 252503 (2010)

Vietze et al. PRD91 043520 (2015)

β –decay Gamow-Teller transitions: "quenching"

 β decays (e^- capture): phenomenology vs ab initio

Martinez-Pinedo et al. PRC53 2602(1996)

 $\langle F|\sum_{i} [g_A \sigma_i \tau_i^-]^{\text{eff}} |I\rangle, \ [\sigma_i \tau]^{\text{eff}} \approx 0.7 \sigma_i \tau$ Standard shell model needs $\sigma_i \tau$ "quenching" ^{8/15}

Gysbers et al. Nature Phys. 15 428 (2019)

Ab initio calculations including meson-exchange currents and additional nuclear correlations do not need any "quenching"

Origin of β decay "quenching"

Which are main effects missing in conventional β -decay calculations? Test case: GT decay of ¹⁰⁰Sn

Relatively similar and complementary impact of

- nuclear correlations
- meson-exchange currents

Gysbers et al. Nature Phys. 15 428 (2019)

Muon capture

℀TRIUMF

Ordinary Muon Capture (OMC) vs. $0\nu\beta\beta$

- Weak interaction process with momentum transfer $q \approx 100 \text{ MeV}/c^2$
- Large m_{μ} allows transitions to all J^{π} states up to high energies

credit: L. Jokiniemi

Discovery accelerate

10 / 15

Two-neutrino $\beta\beta$ decay, 2ν ECEC

 $2\nu\beta\beta$ decay same initial, final states , similar operator ($\sigma\tau$) as $0\nu\beta\beta$ Comparison of predicted $2\nu\beta\beta$ decay vs data

Shell model reproduce $2\nu\beta\beta$ data including "quenching"

Prediction previous to ⁴⁸Ca measurement!

Caurier, Poves, Zuker PLB 252 13(1990)

$$M^{2\nu\beta\beta} = \sum_{k} \frac{\left\langle \mathbf{0}_{f}^{+} \mid \sum_{n} \sigma_{n} \tau_{n}^{-} \mid \mathbf{1}_{k}^{+} \right\rangle \left\langle \mathbf{1}_{k}^{+} \mid \sum_{m} \sigma_{m} \tau_{m}^{-} \mid \mathbf{0}_{i}^{+} \right\rangle}{E_{k} - (M_{i} + M_{f})/2}$$

Table 2

The ISM predictions for the matrix element of several 2ν double beta decay (in MeV⁻¹). See text for the definitions of the valence spaces and interactions.

	$M^{2\nu}(exp)$	q	$M^{2\nu}(th)$	INT
$^{48}\text{Ca} ightarrow ^{48}\text{Ti}$	0.047 ± 0.003	0.74	0.047	kb3
48 Ca $\rightarrow {}^{48}$ Ti	0.047 ± 0.003	0.74	0.048	kb3g
48 Ca $\rightarrow {}^{48}$ Ti	0.047 ± 0.003	0.74	0.065	gxpf1
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.140 ± 0.005	0.60	0.116	gcn28:50
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.140 ± 0.005	0.60	0.120	jun45
82 Se $\rightarrow {}^{82}$ Kr	0.098 ± 0.004	0.60	0.126	gcn28:50
82 Se $\rightarrow {}^{82}$ Kr	0.098 ± 0.004	0.60	0.124	jun45
$^{128}\text{Te} \rightarrow ^{128}\text{Xe}$	0.049 ± 0.006	0.57	0.059	gcn50:82
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	0.034 ± 0.003	0.57	0.043	gcn50:82
$^{136}\text{Xe} ightarrow ^{136}\text{Ba}$	0.019 ± 0.002	0.45	0.025	gcn50:82

Caurier, Nowacki, Poves, PLB 711 62 (2012)

Running of $2\nu\beta\beta$ matrix elements

Measurements of $\beta\beta$ decay spectra can test calculations with different matrix element as function of energy of intermediate state

Qualitative very different shell model vs QRPA

QRPA also quite different between different g_A^{eff} values (or diff. isoscalar pairing g_{pp})

Smaller QRPA g_A^{eff} preferred in some β -decay studies Faessler et al. JPG 35 075104 (2008)

KamLAND-Zen, JM, Dvornicky, Šimkovic, PRL122 192501 (2019)

136 Xe $\longrightarrow {}^{136}$ Ba 0^+_2 running sums

Subtle cancellation NME running sum, depends on many-body method

Jokiniemi, Romeo, Brase, Kotila et al. PLB 838 137689 (2023)

Shell-model running sum shows cancellations in decay to ground state QRPA running sum shows cancellations in decay to excited state

Test of nuclear structure: GT decays

Shell Model predicts $2\nu\beta\beta$ decay GT quenching is needed \Downarrow

Table 2

The ISM predictions for the matrix element of several 2ν double beta decays (in MeV⁻¹). See text for the definitions of the valence spaces and interactions.

	$M^{2\nu}(exp)$	q	$M^{2\nu}(th)$	INT
48 Ca $\rightarrow {}^{48}$ Ti	0.047 ± 0.003	0.74	0.047	kb3
$^{48}Ca \rightarrow ^{48}Ti$	0.047 ± 0.003	0.74	0.048	kb3g
$^{48}Ca \rightarrow {}^{48}Ti$	0.047 ± 0.003	0.74	0.065	gxpf1
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.140 ± 0.005	0.60	0.116	gcn28:50
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.140 ± 0.005	0.60	0.120	jun45
${}^{82}\text{Se} \rightarrow {}^{82}\text{Kr}$	0.098 ± 0.004	0.60	0.126	gcn28:50
${}^{82}\text{Se} \rightarrow {}^{82}\text{Kr}$	0.098 ± 0.004	0.60	0.124	jun45
$^{128}\text{Te} \rightarrow ^{128}\text{Xe}$	0.049 ± 0.006	0.57	0.059	gcn50:82
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	0.034 ± 0.003	0.57	0.043	gcn50:82
136 Xe \rightarrow 136 Ba	0.019 ± 0.002	0.45	0.025	gcn50:82

Caurier, Nowacki, Poves PLB711 62(2012)

Gamow-Teller Strengths well reproduced Exp: Puppe et al. PRC84 051305(2011)⇒

Summary and Outlook

Muon capture provides unique information of a weak-interaction mediated process with similar momentum transfer than neutrinoless $\beta\beta$ decay (only inelastic neutrino scattering can provide similar data but these experiments are also quiete challenging)

Measurement of partial muon capture rates to individual states especially in nuclei which can be calculated reliably (the most controlled calculations correspond to light nuclei) would provide precious information to test the theoretical calculations