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Ordinary Muon Capture (OMC)

µ− +A
Z X(Jπi

i ) → νµ + A
Z−1 Y(J

πf

f )

▶ A negatively charged muon can replace
an electron in an atom, forming a
muonic atom

▶ Eventually bound on the 1s1/2 orbit
▶ The muon can then be captured by the

positively charged nucleus
Ordinary = non-radiative(

Radiative muon capture (RMC):

µ− +A
Z X(Jπi

i ) → νµ + A
Z−1 Y(J

πf

f ) + γ

)

+Ze µ−

-

-
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Ordinary Muon Capture (OMC) vs. 0νββ

u
p{ud d

u} n
d

µ− νµ

W+

µ− +A
Z X(Jπi

i ) → νµ + A
Z−1 Y(J

πf

f )

▶ Weak interaction process with momentum transfer q ≈ 100 MeV/c2

▶ Large mµ allows transitions to all Jπ states up to high energies
▶ Same currents involved (vector, magnetic, axial-vector and psedoscalar)

→ Similar to 0νββ decay!
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Muon-Capture Theory
▶ Interaction Hamiltonian → capture rate:

W (Ji → Jf ) =
2Jf + 1

2Ji + 1

(
1−

q

mµ +AM

)
q2

∑
κu

|gVMV(κ, u) + gMMM(...) + gAMA(...) + gPMP(...)|2

▶ Use realistic bound-muon wave functions
▶ Add the effect of two-body currents
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Nuclear matrix elements

MX ∝ (Ψf ||OX||Ψi)

▶ Initial state and
▶ final state from nuclear theory:

▶ Phenomenological (for heavy and/or open-shell nuclei) OR
▶ Ab initio (for light and/or closed-shell nuclei)

▶ Operator (muon capture)

6 / 27



Nuclear matrix elements

MX ∝ (Ψf ||OX||Ψi)

▶ Initial state and

▶ final state from nuclear theory:

▶ Phenomenological (for heavy and/or open-shell nuclei) OR
▶ Ab initio (for light and/or closed-shell nuclei)

▶ Operator (muon capture)

6 / 27



Nuclear matrix elements

MX ∝ (Ψf ||OX||Ψi)

▶ Initial state and
▶ final state from nuclear theory:

▶ Phenomenological (for heavy and/or open-shell nuclei) OR
▶ Ab initio (for light and/or closed-shell nuclei)

▶ Operator (muon capture)

6 / 27



Nuclear matrix elements

MX ∝ (Ψf ||OX||Ψi)

▶ Initial state and
▶ final state from nuclear theory:

▶ Phenomenological (for heavy and/or open-shell nuclei) OR

▶ Ab initio (for light and/or closed-shell nuclei)
▶ Operator (muon capture)

6 / 27



Nuclear matrix elements

MX ∝ (Ψf ||OX||Ψi)

▶ Initial state and
▶ final state from nuclear theory:

▶ Phenomenological (for heavy and/or open-shell nuclei) OR
▶ Ab initio (for light and/or closed-shell nuclei)

▶ Operator (muon capture)

6 / 27



Nuclear matrix elements

MX ∝ (Ψf ||OX||Ψi)

▶ Initial state and
▶ final state from nuclear theory:

▶ Phenomenological (for heavy and/or open-shell nuclei) OR
▶ Ab initio (for light and/or closed-shell nuclei)

▶ Operator (muon capture)

6 / 27



Axial-Vector Quenching
▶ From β decay of neutrons, we know that gA = 1.27641(45)stat(33)syst

Märkisch et al., Phys. Rev. Lett. 122, 242501 (2019)

▶ Often some “quenching” needed to reproduce measured β-decay half-lives of nuclei:
Towner, Phys. Rep. 155, 263 (1987)

log ft = log
(
f0t1/2[s]

)
= log

(
κ

BF +BGT

)

BF =
g2V

2Ji + 1
|(Jπf

f ||
∑
a

τ−a ||Jπi
i )|2 ,

BGT =
q2 × g2A
2Ji + 1

|(Jπf

f ||
∑
a

τ−a σa||Jπi
i )|2
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gA Quenching at High Momentum Exchange?

▶ Recently, first ab initio solution to gA
quenching puzzle was proposed for
β-decay
P. Gysbers et al., Nature Phys. 15, 428 (2019)

▶ Solution: adding two-body currents
and missing correlations

▶ How about gA quenching at high
momentum transfer ≈ 100 MeV/c?

▶ OMC could provide a hint!

▶ In principle, one could also access the
pseudoscalar coupling gP

Gysbers et al., Nature Phys. 15, 428 (2019)
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First principles or ab initio nuclear theory

Figure courtesy of P. Navrátil
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First principles or ab initio nuclear theory
– what is done at present

Figure courtesy of P. Navrátil 11 / 27



No-Core Shell Model (NCSM)

▶ OMC operators and one-body transition
densities computed in large
harmonic-oscillator (HO) basis

▶ HO basis truncated with Nmax

▶ Quasiexact nuclear many-body
method

▶ Restricted to nuclei with A ≲ 20

→ OMC on 6Li, 12C and 16O

Figure courtesy of P. Navrátil 12 / 27
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Capture Rates to the Ground State of 6He

▶ NCSM in keeping with experiment

▶ The rates can be compared with other
ab initio calculations
King et al., Phys. Rev. C 105, L042501 (2022)
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Capture Rates to the Ground State of 12B

▶ Interaction dependence

▶ Converge slow (clustering effects?)
▶ The results can be compared against

earlier NCSM ones
Hayes et al., Phys. Rev. Lett. 91, 012502 (2003)

▶ 3-body forces essential to reproduce the
measured rate
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Capture Rates to Low-Lying States in 12B
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Capture Rates to Low-Lying States in 12B
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Capture Rates to Low-Lying States in 16N

0 2 4 6 8 10 12
0

5

10

15

20

∞

1b
1b + 2b

Nmax

R
at
e(
1
0
3
/s
)

16O(0+gs) + µ− → 16N(2−gs) + νµ

NN-N4LO+3Nlnl Early exps.

NN-N4LO+3N∗
lnl

Kane 1973

NN-N3LO∗+3Nlnl

0 2 4 6 8 10 12
0.00

0.50

1.00

1.50

2.00

∞

1b
1b + 2b

Nmax
R
at
e(
1
0
3
/s
)

16O(0+gs) + µ− → 16N(1−1 ) + νµ

NN-N4LO+3Nlnl Early exps.

NN-N4LO+3N∗
lnl

Kane -73

NN-N3LO∗+3Nlnl Guichon -79
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Capture Rates to Low-Lying States in 16N
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Total Muon-Capture Rates in 12B and 16N

▶ Color gradient: increasing Nmax

(3,5,7 for 12C and
2,4,6 for 16O)

▶ Rates obtained summing over ∼ 50
final states of each parity

▶ Can be improved

▶ Summing up the rates up to ∼ 20
MeV, we capture ∼ 85% of the
total rate in both 12B and 16N
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LJ, Navrátil, Kotila, Kravvaris, work in progress

19 / 27



Total Muon-Capture Rates
Calculation:
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Experiment:

µ− +100 Mo → νµ +100 Nb
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Muon capture on 136Ba

▶ OMC on 136Ba one of the candidates to
be measured by the MONUMENT
collaboration

▶ Calls for phenomenology:

▶ Far too heavy for NCSM (A >> 20)
▶ Need both positive and negative-parity

states → difficult for VS-IMSRG

▶ Solution: (phenomenological) nuclear
shell model and proton-neutron QRPA
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Excitation energies in 136Cs (J ≤ 5)

▶ The shell-model and pnQRPA
energies are surprisingly
similar

▶ Agreement with experiment
gets much better with the new
measurement
B. M. Rebeiro et al., arXiv:2301.11371 (2023)

exp. ISM qrpa-2BC qrpa-phen
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Muon capture rates
to low-lying states in 136Cs

▶ Summing up the rates to states with EX < 1 MeV:
P. Gimeno, LJ, J. Kotila, M. Ramalho, J. Suhonen, 10.20944/preprints202304.0899.v1 (submitted to Universe)

Rate (1b)(1031/s) Rate (1b+2b)(1031/s) Rate (1b+2b) / Total rate

NSM 248 150− 174 1.4− 1.5%
pnQRPA 1103 592− 807 5− 7%

▶ pnQRPA gives ≈4 times larger rates than NSM
▶ With experimental data, we will know which one is (more) correct
▶ May hint which model is more reliable for the 0νββ decay of 136Xe!

▶ Similar study ongoing for OMC on 128,130Xe
▶ In pnQRPA, can be extended to strength functions!
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Summary

▶ Ab initio muon-capture studies could shed light on gA quenching at finite momentum
exchange regime relevant for 0νββ decay

▶ No-core shell-model describes well partial muon-capture rates in light nuclei 6He, 12B
and 16N

▶ Phenomenological methods still needed for heavy/difficult systems
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Outlook

▶ Study the effect of vector two-body currents (one-pion-exchange & pion-in-flight)
on OMC rates

▶ Study potential OMC candidates 48Ti, 40Ca, 40Ti in another ab initio method,
VS-IMSRG

▶ The “brute force” method cannot reach the total muon-capture rates
→ use the Lanczos strength-function method, instead

▶ Study the effect of exact two-body currents and/or continuum on the OMC rates
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Thank you
Merci



Excitation Energies of 12B

Eexc. (MeV)
Jπ
i Interaction Nmax = 4 Nmax = 6 Nmax = 8(IT) Exp.

1+1 NN(N4LO)-3Nlnl 0.0 0.0 0.0 0.0
NN(N4LO)-3NlnlE7 0.135 0.000 0.000

2+1 NN(N4LO)-3Nlnl 0.251 0.465 0.538 0.953
NN(N4LO)-3NlnlE7 0.000 0.027 0.097

0+1 NN(N4LO)-3Nlnl 2.073 1.831 1.713 2.723
NN(N4LO)-3NlnlE7 3.306 2.909 2.761

2+2 NN(N4LO)-3Nlnl 3.816 3.490 3.344 3.760
NN(N4LO)-3NlnlE7 4.919 4.463 4.281
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Excitation Energies of 16N

Eexc. (MeV)
Jπ
i Interaction Nmax = 4 Nmax = 6 Nmax = 8(IT) Exp.

2−1 NN(N4LO)-3Nlnl 0.154 0.087 0.064 0.0
NN(N4LO)-3NlnlE7 0.214 0.146 0.133

0−1 NN(N4LO)-3Nlnl 2.245 1.487 1.010 0.120
NN(N4LO)-3NlnlE7 2.807 2.065 1.606

3−1 NN(N4LO)-3Nlnl 0.000 0.000 0.000 0.298
NN(N4LO)-3NlnlE7 0.000 0.000 0.000

1−1 NN(N4LO)-3Nlnl 2.561 1.833 1.363 0.397
NN(N4LO)-3NlnlE7 2.985 2.310 1.869
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