

Федеральное государственное бюджетное учреждение науки Институт ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук (ИЯФ СО РАН)

Изучение процесса $e^+e^- \to K^+K^-\eta$ с детектором КМД-3

Иванов Вячеслав Львович

по материалам диссертации на соискание ученой степени кандидата физико-математических наук по научной специальности 1.3.15. Физика атомных ядер и элементарных частиц, физика высоких энергий

Научный руководитель: Федотович Геннадий Васильевич

доктор физ.-мат. наук

ОИЯИ, Дубна, 12.04.2023

План доклада

1. Изучение процесса $e^+e^- \to K^+K^-\eta$ с детектором КМД-3

2. Идентификация заряженных частиц с жидкоксеноновым калориметром детектора КМД-3

Часть 1:

Изучение процесса $e^+e^- \to K^+K^-\eta$ с детектором КМД-3

ВЭПП-2000

Детектор КМД-3

- Энергия до 2.01 ГэВ в с.ц.м.
- Достигнута светимость $L = 7 \times 10^{31} \text{см}^{-2} \text{c}^{-1}$
- Разброс энергии в пучке ~ 0.7 МэВ
- Время между столкновениями пучков ~80 нс

Рисунок 1.1 — Схема детектора КМД-3: 1 — вакуумная камера, 2 — дрейфовая камера, 3 — ВGО калориметр, 4 — Z-камера (ZC), 5 — сверхпроводящий соленоид, 6 — LXe калориметр, 7 — время-пролетная система (TOF), 8 — CsI калориметр, 9 — ярмо,

Процесс $e^+e^- \rightarrow K^+K^-\eta$

- Процесс изучался с детектором BABAR (и, на меньшей статистике, СНД):
 - 1. в канале $\eta \to \gamma \gamma$ (~480 сигнальных событий)
 - 2. в канале $\eta \to \pi^+\pi^-\pi^0$ (~250 сигнальных событий)
- Было найдено, что доминирует канал $\phi'(1680) \to \phi(1020)\eta \Rightarrow$ возможно измерение параметров $\phi'(1680)$
- Наш анализ проводился на основе интегральной светимости $59.5~\mathrm{nf}^{-1}$, набранной с КМД-3 в 2011, 2012 и 2017 гг.

Монте-Карло генератор событий $e^+e^- o K^+K^-\eta$

Отбор событий: «хорошие треки»

- Требуется, чтобы в событии было ровно 2 «хороших» трека с противоположными зарядами
- «Хорошим» считается трек:
- 1. Вылетающий из области взаимодействия пучков |
 ho| < 0.5 см, |z| < 12 см
- 2. Имеющий полярный угол $0.9 < \theta < \pi 0.9$
- 3. Поперечный импульс > 60 МэВ/с
- 4. Для положительно заряженной частицы удельные ионизационные потери в дрейфовой камере dE/dx_{DC} меньше, чем у протонов с соответствующим импульсом

Отбор событий: «хорошие треки»

Рисунок 1.4: Распределение $dE/dx_{\rm DC}$ в зависимости от импульса для положительно заряженных частиц в событиях с более чем одним треком в ДК в эксперименте при $E_{\rm c.m.}$ =2,007 ГэВ. Красная кривая соответствует $dE/dx_{\rm DC,\,protons}(p)$.

Отбор событий

В моделировании dE/dx_{DC} для каонов и пионов разыгрывается по функциями плотности вероятности $f_{K/\pi}(p,dE/dx_{DC})$, найденным в эксперименте в каждой точке по энергии. Вычисляется функция правдоподобия для гипотезы двух каонов:

$$L_{2K} = \sum_{i=1}^{2} \ln \left(\frac{f_K(p_i, dE/dx_{DC,i})}{f_K(p_i, dE/dx_{D,i}) + f_{\pi}(p_i, dE/dx_{DC,i})} \right)$$

• Для отбора каонов применяется условие $L_{2K} > -0.3$:

- Перебираются все пары фотонов с энергией > 40 МэВ и проводится кинематический фит (требуется сохранение энергии и импульса)
- Для (грубого) выделения сигнала требуем $\chi^2 < 75$

Отбор событий

Инвариантная масса фотонов:

Инвариантная масса каонов:

Отбор событий

Рисунок 1.13 — Распределение $m_{\text{inv},2\gamma}$ для событий с $m_{\text{inv},2K} > 1075$ МэВ при $E_{\text{с.т.}} < 1.85$ ГэВ (слева) и $E_{\text{с.т.}} > 1.85$ ГэВ (справа) в эксперименте (маркеры), в моделировании процесса $e^+e^- \rightarrow \phi \eta \rightarrow K^+K^- 2\gamma$ (серая гистограмма) и в моделировании процесса $e^+e^- \rightarrow \phi \eta \rightarrow K^+K^- 2\gamma$ вместе с фоном от процесса $e^+e^- \rightarrow K^+K^-\pi^0\pi^0$ (открытая гистограмма)

Отобранные события с $m_{ m inv,2K} < 1050~{ m MeV/c^2}$

- Угловые распределения частиц в отобранных в эксперименте событиях не противоречат моделированию:
 - Полярный угол нормали к плоскости разлета *K*⁺*K*⁻:

• Полярный угол вылета η :

Helicity-угол вылета K^+ в распаде ϕ :

Событие $K^{+}K^{-}\eta, \eta \to \gamma \gamma$ в детекторе КМД-3

 $\rho - \varphi$ проекция

 ρ — z проекция

Отбор событий и разделение сигнала и фона

- В дальнейшем мы изучаем процесс как $e^+e^- o \phi \eta o K^+K^-\eta$, при этом η рассматривается как частица отдачи. Это позволяет увеличить число сигнальных событий (ценой увеличения фона)
- Рассматриваем события с $m_{\rm inv,2K} < 1050~{
 m MeV/c^2}$
- Основными фоновыми конечными состояниями являются $K^+K^-\pi^+\pi^-$ и $K^+K^-\pi^0\pi^0$

Разделение сигнала и фона проводится аппроксимацией распределения «дисбаланса» энергии

в событии:

 $\Delta E = \sqrt{\vec{p}_{K^+}^2 + m_{K^+}^2 + \sqrt{\vec{p}_{K^-}^2 + m_{K^-}^2 + \sqrt{(\vec{p}_{K^+} + \vec{p}_{K^-})^2 + m_{\eta}^2 - E_{\text{c.m.}}}}$ events 600 Number of events 900 800 600 cut cut cut 300 200 200 100 100 1100 1150 1200 m_{inv,2K}, MeV

Разделение сигнала и фона

• Сигнальный пик в моделировании фитируется тремя гауссами:

$$f_{\text{sig}}^{\text{MC}}(x) = a_0 \Big(a_1 G(x, \mu_1, \sigma_1) + a_2 G(x, \mu_2, \sigma_2) + (1 - a_1 - a_2) G(x, \mu_3, \sigma_3) \Big) \qquad G(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2} \right)$$

• В эксперименте к форме сигнального пика добавляется сдвиг δx и уширение $\delta \sigma$, фон фитируется линейной функцией:

$$f_{\text{sig}}^{\text{exp}}(x) = a_0 \left(a_1 G(x, \mu_1 + \delta x, \sqrt{\sigma_1^2 + \delta \sigma^2}) + a_2 G(x, \mu_2 + \delta x, \sqrt{\sigma_2^2 + \delta \sigma^2}) + (1 - a_1 - a_2) G(x, \mu_3 + \delta x, \sqrt{\sigma_3^2 + \delta \sigma^2}) \right)$$

• Всего в эксперименте выделено 3009 ± 67 сигнальных событий

Эффективность отбора $K^+K^-\eta$ (до поправок):

Разделение сигнала и фона:

Разделение сигнала и фона (2011)

Разделение сигнала и фона (2012)

Разделение сигнала и фона (2017)

Эффективность триггера

- В моделировании триггер считается всегда эффективность оценивалась по данным
- $N_{NT/CT}$ число событий, в которых сработал *только* нейтральный/заряженный триггер
- $N_{NT\&CT}$ число событий, в которых сработали оба триггера

оба триггера
$$\varepsilon_{\rm NT} = \frac{N_{\rm NT\&CT}}{N_{\rm NT\&CT} + N_{\rm CT}}, \varepsilon_{\rm CT} = \frac{N_{\rm NT\&CT}}{N_{\rm NT\&CT} + N_{\rm NT}}$$
 $\varepsilon_{\rm trig} = 1 - (1 - \varepsilon_{\rm NT})(1 - \varepsilon_{\rm CT})$

сработавшим, поэтому его реальная

Поправки к эффективности реконструкции треков

- В области полярных углов $1.0 < \theta < \pi 1.0$ эффективность регистрации треков каонов в моделировании и эксперименте согласуется с точностью 1% (проверено в анализах процессов $e^+e^- \to K^+K^-, K^+K^-\pi^+\pi^-$)
- Отбираем события, в которых один каон летит в «хорошую» область $1.1 < \theta < \pi 1.1$, а второй куда угодно
- Выбираем события под сигнальным пиком $-40~{\rm M}{
 m sB} < \Delta E < 20~{\rm M}{
 m sB}$ (т.к. кинематика сигнального процесса моделируется надежно)

эксперимент в диапазоне $\left| \frac{\pi}{2} - \theta \right| < 0.5$): Number of events 150 φη 0.2

0.4

0.6

0.8

 $|\pi/2-\theta|$, rad

Угловой спектр второго каона (полное

нормировано

моделирование

 $(1+\delta)_{\mathrm{eff}}^{K}$ получается Поправка аппроксимации отношения спектров в полном моделировании и в эксперименте:

Поправки к эффективности реконструкции треков

Поправка к эффективности отбора К⁺К⁻η вычисляется как свертка поправки к эффективности для каонов с угловыми распределениями реконструированных каонов в моделировании:

$$(1 + \delta_{\text{eff}}) = \frac{1}{N_{\text{sim.rec.}}} \sum_{i=1}^{N_{\text{sim.rec.}}} \frac{1}{(1 + \delta_{\text{eff}}^{K}(\theta_{K^{-}})) \cdot (1 + \delta_{\text{eff}}^{K}(\theta_{K^{+}}))}$$

Применение поправки делает оценку полного числа рожденных сигнальных событий не зависящей от отбора по *θ*:

$$N_{\text{sig.tot}} = \sum_{i=1}^{N_{\text{en.points}}} \frac{N_{\text{sig.events}}^i}{\varepsilon^i}$$

Вычисление и аппроксимация сечения

- Поправленная эффективность регистрации: $\varepsilon = \varepsilon_{\mathrm{MC}} (1 + \delta_{\mathrm{eff}}) \varepsilon_{\mathrm{trig}}$
- Сечение вычисляется по формуле: $\sigma_{\mathrm{Born}} = \frac{\sigma_{\mathrm{vis}}}{1 + \delta_{\mathrm{rad}}} = \frac{N_{\mathrm{sig.events}}}{L\varepsilon(1 + \delta_{\mathrm{rad}})\mathcal{B}_{K^+K^-}^{\phi}}$
- Радиационные поправки вычисляются итерациями, на первой итерации используется сечение BaBar

$$1 + \delta_{\text{rad}} = \int_{0}^{1} dx \, F(x, E_{\text{c.m.}}) \frac{\sigma_{\text{Born}}(E_{\text{c.m.}}\sqrt{1-x})}{\sigma_{\text{Born}}(E_{\text{c.m.}})}$$

Аппроксимация сечения

• Для фита сечения можно использовать квазидвухчастичную или трехчастичную формулы:

$$\sigma_{\phi\eta}(s) = 12\pi \frac{|\vec{p}_{\phi}(\sqrt{s})|^{3}}{s^{3/2}} \left| \frac{a_{\text{n.r.}}e^{i\Psi_{\text{n.r.}}}}{s} + \sqrt{\frac{(\Gamma_{ee}^{\phi'}\mathcal{B}_{\phi\eta}^{\phi'})\Gamma_{\phi'}m_{\phi'}^{3}}{|\vec{p}_{\phi}(m_{\phi'})|^{3}}} D_{\phi'}(s) \right|^{2} \xrightarrow{\stackrel{?}{\text{go}}} 0.25 = 0.15 = 0.$$

- Различие между ними сравнимо с систематической ошибкой измерения сечения (5%), поэтому мы используем трехчастичную формулу
- Зависимость ширины $\phi'(1680)$ от квадрата четырех-импульса учитывается как

$$\Gamma_{\phi'}(s) = \Gamma_{\phi'} \left[\mathcal{B}_{K^*(892)K}^{\phi'} \frac{\mathcal{P}_{K^*(892)K}(s)}{\mathcal{P}_{K^*(892)K}(m_{\phi'}^2)} + \mathcal{B}_{\phi\eta}^{\phi'} \frac{\mathcal{P}_{\phi\eta}(s)}{\mathcal{P}_{\phi\eta}(m_{\phi'}^2)} + \mathcal{B}_{\phi\sigma}^{\phi'} \frac{\mathcal{P}_{\phi\sigma}(s)}{\mathcal{P}_{\phi\sigma}(m_{\phi'}^2)} \right]$$

$$\mathcal{B}_{K^*(892)K}^{\phi'} = 0.7, \ \mathcal{B}_{\phi\eta}^{\phi'} = 0.2 \ \mathcal{B}_{\phi\sigma}^{\phi'} = 0.1$$

Аппроксимация сечения

Для фиксации асимптотики сечения мы вынуждены использовать в фите данные ВаВаг при $\sqrt{s} > 2.3 \ \Gamma$ эВ

Есть намек на волнообразное отклонение данных от фита при $\sqrt{s} \sim 1.9$ ГэВ. Возможно, оно связано с неопределенностью бранчингов мод распада $\phi'(1680)$

Скачкообразного изменения сечения на пороге рождения пары нуклон-антинуклон не наблюдается

Аппроксимация сечения

CMD-3

Параметризация через	$\Gamma^{\phi'}_{ee} {\cal B}^{\phi'}_{\phi\eta}$	$\mathcal{B}_{e^+e^-}^{\phi'}\mathcal{B}_{\phi\eta}^{\phi'}$	
Параметр	Значение		
$\chi^2/\mathrm{n.d.f}$	$93.8/79 \approx 1.19$		
$\Gamma_{ee}^{\phi'}\mathcal{B}_{\phi\eta}^{\phi'}$, эВ $\mathcal{B}_{e^+e^-}^{\phi'}\mathcal{B}_{\phi\eta}^{\phi'}$, 10 $^{-6}$	$94 \pm 13_{stat} \pm 15_{syst}$	_	
${\cal B}_{e^+e^-}^{\phi'}{\cal B}_{\phi\eta}^{\phi'},10^{-6}$	_	$0.53\pm0.06_{\text{stat}}\pm0.09_{\text{syst}}$	
$m_{\phi'},~{ m M}$ э ${ m B}$	1667 ± 3	$5_{ m stat}\pm11_{ m syst}$	
$\Gamma_{\phi'},~\mathrm{M} ightarrow \mathrm{B}$	176 ± 23	$8_{\rm stat} \pm 38_{\rm syst}$	
$a_{ m n.r.},~{ m M}$ эВ	1,1=	$\pm 0.6_{\mathrm{stat}}$	
$\Psi_{ m n.r.}$	0,14=	$\pm 0.67_{\mathrm{stat}}$	

BABAR

	$\frac{\chi^2}{\text{n.d.f.}} = \frac{184.9}{160-16} = 1.28$	
R with I = 0	ϕ'	ϕ''
$\Gamma_{ee}^{R} \mathcal{B}_{KK^{*}(892)}^{R}(\text{ eV})$	367 ± 47	=
$\Gamma^R_{ee} \mathcal{B}^R_{\phi\eta} (\text{ eV})$	154 ± 32	1.7 ± 0.8
$1 - \mathcal{B}_{KK^*(892)}^R - \mathcal{B}_{\phi\eta}^R$	0.33 ± 0.14	n
$M_R({ m MeV})$	1709 ± 19	2127 ± 24
$\Gamma_R({ m MeV})$	$325\!\pm\!68$	60 ± 50
$\sigma_{KK^*(892)}^{\text{bkg}}(M_{\phi'}^2)(\text{nb})$	$0.8 {\pm} 0.3$	2
$\sigma_{\phi\eta}^{\mathrm{bkg}}(M_{\phi'}^2)(\mathrm{nb})$	$(4.7\pm1.4)\times10^{-3}$	

Систематические неопределенности измерения сечения

- Мы оцениваем систематическую неопределенность, относящуюся к определенному критерию отбора, как относительную вариацию величины $N_{
 m sig.tot.}$ при вариации (или включении/выключении) этого отбора
- Пределы варьирования отбора выбираются как можно более широкими при соблюдении двух условий: 1) отбор не подавляет значительную (>5%) долю сигнала; 2) форма фона по-прежнему разумно описывается суммарным вкладом конечных состояний $K^+K^-\pi^0\pi^0$ и $K^+K^-\pi^+\pi^-$
- Условия отбра по ρ_{PCA} , z_{PCA} , p_{\perp} и $dE/dx_{DC} < dE/dx_{DC,protons}$ для положительно заряженных частиц, применяемые на этапе отбора "хороших" треков, дают систематику 1.0, 0.5, 0.3 и 0.4%, соответственно. Эти
 значения оцениваются путем включения/выключения соответствующих •
 отборов.
- Ограничение на L_{2K} , используемое для отбора каонов, варьировалось в пределах от -0.6 до -0.1. Соответствующая систематика равна 0.8%.
- Ограничение на $m_{\rm inv,2K}$, использованное для отбора событий из области ϕ -мезона, варьировалось в пределах от 1050 до 1100 МэВ. Соответствующая неопределенность составляет 0.7%.
- Нижний предел распределения ΔE варьировался в пределах от -180 до -100 МэВ. Соответствующая неопределенность составляет 1%.
- Верхний предел распределения ΔE варьировался в пределах от 50 до 150 МэВ. Соответствующая неопределенность составляет 1%.
- Положение сигнального пика может быть фиксированным из моделирования ($\delta x \equiv 0$) или быть свободным параметром фита распределения ΔE в эксперименте. Связанная с этим систематическая неопределенность составляет 2%.

- Ширина сигнального пика может быть фиксирована из моделирования (δσ ≡ 0) или быть свободным параметром фита, соответствующая неопределенность составляет 2.5%.
- Форма фона при аппроксимации распределения \(\Delta E\) в эксперименте может быть принята линейной со свободными параметрами, либо её параметры могут быть фиксированы из аппроксимации моделирования фона. Систематическая неопределенность составляет 2.3%.
- Неопределенность эффективности регистрации одиночных каонов оценивается в 1%, для пары каонов 1.5%. Неопределенность поправки к эффективности отбора K⁺K⁻η, связанная с угловой зависимостью эффективности регистрации каонов (см. Раздел 1.2.3), оценивается в 1.5%.
- Систематическая ошибка измерения светимости равна 1% [25].
- Неопределенность бранчинга $\mathcal{B}^{\phi}_{K^+K^-}$ составляет $\sim 1\%$.

Систематические неопределенности измерения сечения

Источник	Значение, %
Отбор событий	1.6
Разделение сигнала и фона	4.1
Поправка к эффективности	2.1
Светимость	1
$\mathcal{B}^\phi_{K^+K^-}$	1
Итог	5.1

Систематические неопределенности параметров $\phi'(1680)$

- Систематическая неопределенность измерения сечения в 5.1% вызывает аналогичную неопределенность в параметрах $\Gamma^{\phi'}_{ee}\mathcal{B}^{\phi'}_{\phi\eta}$ и $\mathcal{B}^{\phi'}_{e^+e^-}\mathcal{B}^{\phi'}_{\phi\eta}$.
- Неопределенность бранчингов мод распада ϕ' обусловливает неопределенность формы пика ϕ' в сечении. Согласно [33] относительные неопределенности $\mathcal{B}_{K^*(892)K}^{\phi'}$, $\mathcal{B}_{\phi\eta}^{\phi'}$ и $\mathcal{B}_{\phi\sigma}^{\phi'}$ могут быть оценены в 15%, 30% и 15%, соответственно. Вариация бранчингов в пределах этих неопределенностей с ограничением $\mathcal{B}_{K^*(892)K}^{\phi'} + \mathcal{B}_{\phi\eta}^{\phi'} + \mathcal{B}_{\phi\sigma}^{\phi'} \equiv 1$ приводит к неопределенности в 3 эВ для $\Gamma_{ee}^{\phi'}\mathcal{B}_{\phi\eta}^{\phi'}$, 4 МэВ для $m_{\phi'}$ и 13 МэВ для $\Gamma_{\phi'}$.
- Вклад от неопределенности формы нерезонансной амплитуды изучался путем аппроксимации сечения с различными нерезонансными амплитудами: 0, $a_{\rm n.r.}$, $a_{\rm n.r.}/s^{3/2}$, $a_{\rm n.r.}/s$, $a_{\rm n.r.}/\sqrt{s}$, $a_{\rm n.r.}\cdot\sqrt{s}$, $a_{\rm n.r.}\cdot s$, где $a_{\rm n.r.}$ есть константа. Получающиеся неопределенности параметров ϕ' составляют 14 эВ для $\Gamma_{ee}^{\phi'}\mathcal{B}_{\phi n}^{\phi'}$, 10 МэВ для $m_{\phi'}$ и 36 МэВ для $\Gamma_{\phi'}$.

Вклад в $(g-2)_{\mu}$

$$a_{\mu}^{\phi\eta}(E < E_{\text{max}}) = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^{2} \int_{E_{\text{min}}^{2}}^{E_{\text{max}}^{2}} \frac{ds}{s^{2}} K(s) \cdot \frac{\sigma(e^{+}e^{-} \to \phi\eta)|1 - \Pi(s)|^{2}}{\sigma_{0}(e^{+}e^{-} \to \mu^{+}\mu^{-})}.$$

CMD-3

$$a_{\mu}^{\phi\eta}(E < 1.8 \text{ GeV}) = (32.1 \pm 1.5_{\text{stat}} \pm 1.6_{\text{syst}}) \times 10^{-12}$$

 $a_{\mu}^{\phi\eta}(E < 2.0 \text{ GeV}) = (44.0 \pm 1.5_{\text{stat}} \pm 2.2_{\text{syst}}) \times 10^{-12}$

BABAR

$$a_{\mu}^{\phi\eta}(E < 1.8 \text{ GeV}) = (32.1 \pm 1.5_{\text{stat}} \pm 1.6_{\text{syst}}) \times 10^{-12}$$

$$a_{\mu}^{\phi\eta}(E < 1.8 \text{ GeV}) = (36 \pm 2_{\text{stat}} \pm 2_{\text{syst}}) \times 10^{-12}$$

$$a_{\mu}^{\phi\eta}(E < 2.0 \text{ GeV}) = (44.0 \pm 1.5_{\text{stat}} \pm 2.2_{\text{syst}}) \times 10^{-12}$$

$$a_{\mu}^{\phi\eta}(E < 2.0 \text{ GeV}) = (46 \pm 3_{\text{tot}}) \times 10^{-12}$$

Заключение по части 1

- Процесс $e^+e^- \to K^+K^-\eta$ изучен с детектором КМД-3 на основе 59.5 пб $^{-1}$ данных, набранных в 2011, 2012 и 2017 годах
- Наблюдается вклад только промежуточного механизма $\phi \eta \to K^+ K^- \eta$
- Измерено сечение $e^+e^- o \phi \eta$, из его аппроксимации определены параметры $\phi'(1680)$
- Уточнен вклад $\phi\eta$ в $(g-2)_{\mu}$

Часть 2:

Идентификация заряженных частиц с жидкоксеноновым калориметром детектора КМД-3

LXe-калориметр детектора КМД-3

HV

calorimeter, 9 - Yoke.

Мотивация

- Заряженные K^\pm и π^\pm КМД-3 на разделяются по dE/dx_{DC}
- Разделение одиночных K^{\pm} и π^{\pm} dE/dx_{DC} возможно лишь до $p < 550~{
 m MeV/c}$
- Для изучения конечных состояний K^+K^- , $K^+K^-\pi^0$, $K^+K^-\pi^0\pi^0$ и др. при высоких энергиях полезна или даже необходима идентификация частиц с использованием dE/dx_{LXe} в нескольких слоях LXe

Общие замечания

- среднем dE/dx_{LXe} возрастает от слоя к слою
- Перед LXe находится количество заметное вещества» «мертвого $(\sim 0.35 X_0)$. Каждый тип частицы имеет определенный пороговый импульс влета в калориметр, зависящий от угла. Для ~300 MeV/c каонов порог при нормальном падении, ниже порога в калориметр попадают только продукты $\gtrsim 60$ ИЛИ ядерного распада взаимодействия
- dE/dx_{LXe} зависит от углов влета частицы в калориметр (меняется скорость вероятность торможения, взаимодействия, ядерного скорость развития ливня от слоя к слою)

Процедура идентификации

• Для каждого трека в ДК считаются 6 откликов классификаторов ВDT, натренированных на разделение определенных пар типов частиц в определенных диапазонах импульса Δp_i и ожидаемой (по экстраполяции трека из ДК) длины пролета частицы в слое LXe $\Delta d_{LXe,j}$:

$$BDT(e^{\pm}, \mu^{\pm}), BDT(e^{\pm}, \pi^{\pm}), BDT(e^{\pm}, K^{\pm}), \\ BDT(\mu^{\pm}, \pi^{\pm}), BDT(\mu^{\pm}, K^{\pm}), BDT(\pi^{\pm}, K^{\pm})$$

• Входными переменными являются определенные линейные комбинации dE/dx_{LXe} в 12 слоях (внешний слой не используется из-за недолива ксенона)

- Каждый классификатор тренируется на $\sim 150 \cdot 10^3$ смоделированных событиях. Всего используется 55 диапазонов по импульсу с шагом 20 МэВ/с (от 100 до 1200 МэВ/с) и 8 диапазонов по d_{LXe} , итого имеем $2 \times 6 \times 55 \times 8 = 5280$ классификаторов
- Помимо перечисленных выше классификаторов на основе событий со *всеми* разделяемыми типами частиц мы тренируем $2 \times 55 \times 8 = 880$ *мультиклассификаторов* ВDT. Для каждого трека в ДК один мультиклассификатор вычисляет 4 отклика: $BDT(e^{\pm})$ ("электронность"), $BDT(\mu^{\pm})$ ("мюонность"), $BDT(\pi^{\pm})$ ("пионность"), $BDT(K^{\pm})$ ("каонность"), характеризующих степень схожести данной частицы с частицами соответствующего типа
- Для хорошего согласия спектров откликов BDT в эксперименте и моделировании необходима точная калибровка полосковых каналов, а также настройка их отклика в моделировании

Моделирование отклика полосковых каналов

$$f(z) = -2\varkappa \text{Ln}(z - z_0)$$

$$U(\rho, \varphi) = -2\varkappa \ln \left| \frac{z^n - z_0^n}{z^n - \overline{z}_0^n} \right| = -\varkappa \frac{(\rho/\rho_0)^{2n} - 2(\rho/\rho_0)^n \cos(n(\varphi - \varphi_0)) + 1}{(\rho/\rho_0)^{2n} - 2(\rho/\rho_0)^n \cos(n(\varphi + \varphi_0)) + 1}$$

$$n \to \infty \text{ при } y_0, h - y_0 = \text{const}$$

$$U(x,y) = -\varkappa \ln \left(\frac{\operatorname{ch}(\pi(x-x_0)/h) - \cos(\pi(y-y_0)/h)}{\operatorname{ch}(\pi(x-x_0)/h) - \cos(\pi(y+y_0)/h)} \right)$$

$$q_{ ext{strip}}(x_-, x_+, y_0) = \frac{\varkappa}{\pi} (f(x_+ - x_0, y_0) - f(x_- - x_0, y_0)),$$
 где $f(x, y) = \operatorname{arctg}\left(\frac{\exp(\pi x/h) - \cos(\pi y/h)}{\sin(\pi y/h)}\right)$

Моделирование отклика полосковых каналов

 Ток в полоске от дрейфа элемента ионизации:

$$\delta I_{\text{strip}}(t) = \dot{q}_{\text{strip}} = \delta q \cdot v_d \cdot \exp(-v_d t/\lambda) \left(\frac{\partial f(x_+ - x_0, y)}{\partial y} - \frac{\partial f(x_- - x_0, y)}{\partial y} \right)$$

$$\frac{\partial f(x,y)}{\partial y} = \frac{1}{h} \frac{1 - \exp(\pi x/h)\cos(\pi y/h)}{\exp(2\pi x/h) - 2\exp(\pi x/h)\cos(\pi y/h) + 1}$$

• Амплитуда полоски находится как максимум свертки токового сигнала с функцией отклика усилителя- формирователя:

• Спектры dE/dx_{LXe} для минимально ионизирующих частиц существенно зависят от длины поглощения λ :

Рисунок 2.10 — Спектры $dE/dx_{\rm LXe}$ в 1-м слое LXe после калибровки среднего значения в моделировании с λ равным 100 мм (открытая гистограмма), 15 мм (серая гистограмма), 5 мм (горизонтальная штриховка) и 2 мм (вертикальная штриховка). Левая (правая) картинка соответствует моделированию μ^+ (e^+) с импульсом 1 ГэВ и равномерным распределением по телесному углу.

Калибровка полосковых каналов

• Была разработана процедура калибровки полосок по космическим мюонам, включающая три этапа:

- 1) «Выравнивание полосок» в слое
- 2) «Выравнивание слоев»
- 3) Вычисление цены канала

Выравнивание полосок в слое

- Отбирается нецентральная космика с $p > 1 \, \mathrm{GeV/c}$, с двух концов ДК-трека пришиваются два LXe-трека, в кластерах которых отбираются главные полоски (полоски с макс. амплитудой)
- Максимумы спектров амплитуд главных полосок (ГП), нормированных на длину пролета частицы в слое $(dE/dx_{LXe}^{main\ strip})$, калибровочным коэфф-том K_1 приводятся к среднему положению максимума на данном катоде

Выравнивание полосок в слое

Спектры $dE/dx_{LXe}^{main\; strip}$:	Layer II strp / lon-clo		Layer 8 sht 2 tick 411 tion # 14	Cayer 8 any 3 line 405 fram # 15	Laper II day of law AII Laure 10	Layer II step 5 Iron Gal Dama #	2019 E 104 424	Layer 9 ettp 7 f 1 lost 434 best #3	Layer 8 etgs 8 tox 420 tox 6.20	Laper 9 step 1 lea - 420 leant # 20	Laper D smp 1D sm 438 Stans 8 3 1
«мертвый» канал —	→		Layer 8 area 12 218 437 bank # 17	Layer 2 athy 13 104 437 laws 4 18	Laper 2 exp 14 em 427 execute 416	Layer 0 step 10 few 42s 1 mont 6	atrig 15 to 435	Layer 9 etc 17 tre 430 bank #15	Layer 9 step 50 loss 400 band # 50	Laper 0 strip 10 len 437 bans # 1	Laper 0 emp 20 lon 427 hand #2
	Layer G ang 21 tro. 437 trans 6		Layer 8 strip 22 link 415 phark # 20	Layer 3 14tp 23 11ta 405 2sant # 30	Layer 9 2019 24 8m 425 6 turn # 21	Layer 9 step 25 sin 435 hank 9	eng 30 tra 434	Layer 9 etip 27 918.434 bank #18	Laper 6 stop 20 inx 42s facts 6 10	Layer 9 strip 29 lim 432 bank # (1)	Layer 9 emp 30 hm 432 hans # 14
	Company Chapter St. Str. ACC S		Layer 8 step 32 line 432 taris # 10	Layer's erp 23 low 401 bank # f	Layer 6 etrp 34 bin 431 lams # 2	Layer 0 swp.36 ira.42 have s	20 9 30 10 4 432	Layer 9 atip 37 tirs 432 bank #30	Laper 9 step 30 fm 432 fms 427	Lapar 9 mip 29 min 4M mark # 12	Layer 0 emp 40 bm 420 bms 47
	Layer 3	1	Layer 8 ant) 42 sec 421	Layer 8 strp 41 Line 425	/ June 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Layer 0	A =====	Layer B step 67 typ 428	Laper 9 skip 48 loss 424	Committee of the sales	Laper 0 emp 10 lm 425
	Value of the state		Layer 2 Map 52	Loyer 2 and 23	Layer S are 54	Layer II	/_	Layer 0	Ingert atp 50	Layer 9 map 50	Layer 0 sep 60
	In 425 tout 6		100:425 mark # 21	line 455 famil # 32	bank # 17	In the Co	八	See 420 Sand # 12	Inc. 438 Super 8	States #15	and and based of the same of t
	1		ang 62 tex 427 tex 427	strp.63 Ints.427 Ints.427	strp 64 10 x 420 tanx # 20	See Gill See Gill See Gill	arry 65 (see 438	409.67 69.428	arep 58 inc 427 last # 17	atrip.00 link 407 bank # 16	strp 70 los 427 bank 918
	1 Layer 9 exp. 71 en 423 tans #1		Layer 6 units 75 loss 423 have # 26	Layer 9 artyr 73 inte 423 back # 29	Layer 9 strp.T4 bit 423 bars # 20	Layer 9 step. 75 fra. G2 hank #	atrig 75 loc 463	Layer 9 etip 77 f ann 413 tomic # 28	Laper 9 etg: 70 fmx 483 task # 25	Layer 0 mig. 79 tile 403 taxis # 10	Layer 0 smp 80 bm 443 g bass # 21
		. /	-	/	/	1	1/	/ 1	1	1 1	/ _

Учет модуляции K_1 по азимутальному углу

- На самом деле для космики не все полоски одинаковы, в моделировании наблюдается модуляция K_1 по $\varphi \pm 1\%$. Она связана с остаточной зависимостью спектра $dE/dx_{LXe}^{main\ strip}$ от наклона трека в слое
- Такая же модуляция наблюдается в эксперименте в разности коэффициентов K_1 , посчитанных по космике и по $e^+e^- \to \mu^+\mu^-$ (последний процесс, в отличие от космики, азимутально симметричен)
- Максимумы спектров ГП приводятся к этой модуляции

Выравнивание полосок: группировка заходов

• Для вычисления K_1 с точностью лучше 0.5% требуется ~10000 событий в гистограмме. Для достижения такой точности заходы группируются: для каждого захода вокруг него набирается минимально достаточное (для набора 10000 событий) количество ближайших по времени заходов

Выравнивание полосок: «грязный» ксенон

В течение сезона варьируется чистота (доля электроотрицательных ксенона Поэтому примесей). более для правильного вычисления K_1 средняя амплитуда ГΠ ПО всем СЛОЯМ калибруется предварительно 200-м приводится каналам точностью 0.5%)

был отмечен «грязным» ГОД ксеноном в течение 2/3 сезона:

2017-й год

Выравнивание средних амплитуд кластеров между слоями

- Средние по слоям коэффициенты усиления ЗЧУ неодинаковы + есть эффект от недолива ксенона
- Поэтому проводится выравнивание средних амплитуд кластеров в слоях (приведение их к их общему среднему)
- Такая же калибровка проводится для моделирования

$\searrow^{\sim}_{1.02}$ Layer #: 1 2 3 4 5 6 7 iter 2 1.005 0.995 0.985 0.98 0.975 92000 93000 94000 95000 91000 Run number

Вычисление цены канала

• Цена канала вычисляется как

$$K_{3} = \frac{\sum_{l=1}^{7} \overline{dE/dx}_{\text{clust}}^{l,\text{MC}}}{\sum_{l=1}^{7} \overline{dE/dx}_{\text{clust}}^{l,\text{data}}} \cdot K_{3,\text{MC}}[\text{MeV/channel}]$$

где $K_{3,MC}$ - цена канала в моделировании

Результаты калибровки

- После калибровки в экспериментальных спектрах dE/dx_{LXe} космики наблюдается уширение относительно моделирования
- Гипотеза: оно обусловлено сложной полосковой структурой катода (в моделировании катод описывается сплошной проводящей плоскостью)

Настройка МС для т.і.р.-ов

- Из-за наличия зазоров между полосками ионизация в одном зазоре наводит амплитуду в полосках другого зазора. По сравнению с обычной внутрислойной наводкой межслойная происходит с некоторым коэффициентом подавления, зависящим от положения ионизации в зазоре и от геометрии катода: ширины диэлектрика, полоски и зазора
- Средний коэффициент подавления по всем положениям ионизации в зазоре мы называем коэффициентом прозрачности $T_l, l=1\dots 7$
- Прозрачность замешивает реальные энерговыделения в амплитуды, измеренные по верхним и нижним полоскам
- В дальнейшем мы работаем с полусуммой и полуразностью «реальных» энерговыделений. Эти величины в 6-ти слоях используются как входные переменные BDT

$$\frac{dE/dx_{\rm up}^{\rm meas}}{dE/dx_{\rm low}^{\rm meas}} = \frac{1}{1+T_l} \begin{bmatrix} 1 & T_l \\ T_l & 1 \end{bmatrix} \cdot \begin{bmatrix} dE/dx_{\rm up}^{\rm real} \\ dE/dx_{\rm low}^{\rm real} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} dE/dx_{\rm up}^{\rm real} + dE/dx_{\rm low}^{\rm real} \\ dE/dx_{\rm up}^{\rm real} - dE/dx_{\rm low}^{\rm meas} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} dE/dx_{\rm up}^{\rm meas} + dE/dx_{\rm low}^{\rm meas} \\ (dE/dx_{\rm up}^{\rm meas} - dE/dx_{\rm low}^{\rm meas}) \cdot (1+T_l)/(1-T_l) \end{bmatrix}$$

$$\frac{1}{4}$$

$$\frac{1}{$$

Настройка МС для т.і.р.-ов

- В экспериментальных спектрах dE/dx_{summ} для космики наблюдается уширение, моделирование было поправлено на уровне оцифровщика добавлением коррелированного шума (для каждого хита) ~ $\sqrt{E_{hit}} \cdot r$ к амплитудам верхних и нижних полосок, где r распределено по гауссу. Сигма гаусса одинакова для всех слоев
- Спектры dE/dx_{diff} в эксперименте и моделировании сравниваются в отдельных слоях по dE/dx_{summ}

- Разное положение максимумов в эксперименте и моделировании означает неправильность априори принятого коэффициента прозрачности (0.17), разная ширина пиков необходимость введения уширения
- Положения пиков приводятся в соответствие подбором T_l в каждом слое
- Уширение в dE/dx_{diff} вводится антикоррелированной добавкой $\sim \sqrt{E_{hit}} \cdot r$ (r распределено по гауссу) к амплитудам верхних и нижних полосок. Эта добавка имитирует перераспределение заряда между нижними и верхними полосками из-за вариации коэффициента прозрачности относительно среднего

Настройка МС для m.i.p.-ов: dE/dx_{diff}

• Был опробован и другой способ определения T_l — численный расчет полей. Ставим в зазор равномерно заряженный брусок с диэл. проницаемостью ксенона, с размерами равными периоду полосковой структуры:

Считаем поля и интегрируем по поверхности нижних и верхних полосок. Отношение наведенных зарядов есть T₁

Слой	T_l (field/ dE/dx_{diff})
1	0.29 / 0.23
2	0.24 / 0.22
3	0.37 / 0.35
4	0.35 / 0.32
5	0.4 / 0.35
6	0.37 / 0.33
7	0.36 / 0.33

Настройка МС для электромагнитных ливней

• Наблюдается уширение спектра dE/dx_{summ} для e^+e^- . Т.к. амплитуды большие, добавочные шумы, применяемые для m.i.p.-ов, почти не влияют на моделирование

Для установления причин неточности моделирования ливней было проверено:

- Влияние Physics List GEANT4 нет эффекта
- Исследовалось влияние плотности ксенона и количества мертвого вещества перед ним. Добавлялось 0.0- $0.3~X_0$ вещества перед калориметром, это не позволяет воспроизвести наблюдаемое отличие
- Произведено сравнение спектров dE/dx_{LXe} от e^+e^- в соответствующих точках заходов 2017 г. (грязный ксенон) и 2019 г. (чистый ксенон). Проверено, что влияние чистоты ксенона на форму спектров крайне мало. Моделирование с разными длинами поглощения ионизации подтверждает этот вывод.
- Итог: причины неточности моделирования ливней не установлены

• Для исправления оказалось достаточным линейного преобразования спектров dE/dx для e^{\pm} в моделировании:

$$dE/dx[l] \to 1.055 \cdot (dE/dx[l] - 0.7)$$

После поправки согласие приемлемое:

Поправка хорошо работает независимо от угла:

• Поправка хорошо работает независимо от энергии e^{\pm} :

• Поправка работает неплохо независимо от энергии e^{\pm} :

Ливень в первом слое

Эффективность классификаторов: общий взгляд

• Спектры откликов BDT в моделировании (распределение по d_{LXe} равномерное):

Эффективность мультиклассификаторов: общий взгляд

Спектры откликов мультиклассификаторов BDT в моделировании (распределение по d_{LXe} равномерное):

data/MC сравнение спектров BDT: e^{\pm}

- e^{\pm} отбираются из событий $e^{+}e^{-} \to e^{+}e^{-}$ следующими условиями:
 - 1) есть ровно 2 противоположно заряженных центральных $(|\rho|<0.5 \text{ см}, |z|<12 \text{ см})$ трека в ДК
 - 2) полярные углы треков $1.0 < \theta < \pi 1.0$
 - 3) условие на коллинеарность треков по θ и φ :

$$| heta_1 + heta_2 - \pi| < 0.15$$
 рад $|| heta_1 - heta_2| - \pi| < 0.15$ рад

- 4) энергия каждого из кластеров, пришитых к трекам > $E_{beam}/2$
- Спектры BDT в эксперименте и моделировании согласуются при любых энергиях e^{\pm}

Рисунок 2.33 — Спектры $BDT(e^{\pm}, \mu^{\pm})$ (слева), $BDT(e^{\pm}, \pi^{\pm})$ (посередине) и $BDT(e^{\pm}, K^{\pm})$ (справа) для заряженных частиц, выделенных условиями отбора, перечисленными в разделе 2.6.1. Маркеры соответствуют экспериментальным данным, серая гистограмма — моделированию конечного состояния $e^{+}e^{-}$, штрихованная гистограмма — моделированию конечных состояний $e^{+}e^{-}$, $\mu^{+}\mu^{-}$, $\pi^{+}\pi^{-}$ и космики. Верхние картинки соответствуют энергии пучков $E_{\text{beam}} = 280 \text{ МэВ}$, нижние — $E_{\text{beam}} = 987,5 \text{ МэВ}$. В последнем случае примесь конечных состояний, отличных от $e^{+}e^{-}$, пренебрежимо мала.

data/MC сравнение спектров мультиклассификаторов BDT: e^{\pm}

Рисунок 2.46: Спектры откликов BDT (e^{\pm}) (сверху) и BDT (μ^{\pm}) (снизу) мультиклассификатора для заряженных частиц, выделенных условиями отбора, перечисленными в разделе 2.6.1 при $E_{\text{beam}} = 280 \text{ MpB}$ (слева) и $E_{\text{beam}} = 987,5 \text{ MpB}$ (справа). Маркеры соответствуют экспериментальным данным, серая гистограмма — моделированию конечного состояния e^+e^- , штрихованная гистограмма — моделированию конечных состояний e^+e^- , $\mu^+\mu^-$, $\pi^+\pi^-$ и космики. В случае $E_{\text{beam}} = 987,5 \text{ MpB}$ примесь конечных состояний, отличных от e^+e^- , пренебрежимо мала.

Рисунок 2.47: Спектры откликов BDT(π^{\pm}) (сверху) и BDT(K^{\pm}) (снизу) мультиклассификатора для заряженных частиц, выделенных условиями отбора, перечисленными в разделе 2.6.1 при $E_{\text{beam}} = 280 \text{ MpB}$ (слева) и $E_{\text{beam}} = 987,5 \text{ MpB}$ (справа). Маркеры соответствуют экспериментальным данным, серая гистограмма — моделированию конечного состояния e^+e^- , штрихованная гистограмма — моделированию конечных состояний e^+e^- , $\mu^+\mu^-$, $\pi^+\pi^-$ и космики. В случае $E_{\text{beam}} = 987,5 \text{ MpB}$ примесь конечных состояний, отличных от e^+e^- , пренебрежимо мала.

data/MC сравнение спектров BDT: e^{\pm}

• В качестве *количественной* характеристики степени согласия спектров ВDТ в эксперименте и моделировании мы используем величину $|\varepsilon_{exp} - \varepsilon_{MC}|(BDT_{cut})$, где $\varepsilon_{exp/MC}(BDT_{cut})$ – доли отбрасываемых событий при отборе $BDT < BDT_{cut}$. С точки зрения анализа данных нас интересует только значение $|\varepsilon_{exp} - \varepsilon_{MC}|(BDT_{cut})$ вблизи предполагаемого значения BDT_{cut}

Рисунок 2.34 — Зависимость $|\varepsilon_{\rm exp} - \varepsilon_{\rm MC}|$ от ${\rm BDT_{cut}}$ для классификаторов ${\rm BDT}(e^{\pm}, \pi^{\pm})$ (слева) и ${\rm BDT}(e^{\pm}, K^{\pm})$ (справа) и e^{\pm} , отобранных из событий процесса $e^{+}e^{-} \rightarrow e^{+}e^{-}$ при $E_{\rm beam} = 280~{\rm M}$ эВ (слева) и $E_{\rm beam} = 987,5~{\rm M}$ эВ (справа).

data/MC сравнение спектров BDT: μ^{\pm}

- μ[±] отбираются из событий космики следующим набором условий:
- 1. есть ровно 1 нецентральный трек в ДК ($|\rho|$ >3 см);
- 2. импульс от 100 до 1200 МэВ/с;
- 3. энерговыделение частицы в калориметре < 400 МэВ
- Спектры BDT в эксперименте и моделировании хорошо согласуются

Рисунок 2.36 — Зависимость $|\varepsilon_{\rm exp} - \varepsilon_{\rm MC}|$ от BDT_{cut} для классификаторов BDT (μ^{\pm}, K^{\pm}) для событий космики.

В ряде случаев в спектрах ВDТ наблюдаются пикующиеся структуры. Для частиц типа bkg и sig в спектре классификатора BDT(bkg,sig) может наблюдаться серия пиков, если частицы типов bkg и/или sig могут претерпевать ядерные взаимодействия или распады, меняющие характер их дальнейшего взаимодействия с веществом калориметра. Например, в случае $bkg = \mu^+$ и $sig = K^+$:

- μ⁺ с малыми импульсами, останавливаясь в веществе перед калориметром или внутри него, в основном распадаются на e⁺ и пару нейтрино, порождая электромагнитный ливень и становясь, тем самым, более «похожими» на ядерновзаимодействующие K⁺
- K^+ распадается на μ^+ и нейтрино

data/MC сравнение спектров мультиклассификаторов BDT: μ^{\pm}

Рисунок 2.50: Спектры откликов $BDT(e^{\pm})$ (слева) и $BDT(\mu^{\pm})$ (справа) мультиклассификатора для космических μ^{\pm} с импульсом от 100 до 1200 МэВ в эксперименте (маркеры) и моделировании (серая гистограмма).

Рисунок 2.51: Спектры откликов BDT(π^{\pm}) (слева) и BDT(K^{\pm}) (справа) мультиклассификатора для космических μ^{\pm} с импульсом от 100 до 1200 МэВ в эксперименте (маркеры) и моделировании (серая гистограмма).

data/MC сравнение спектров BDT: π^{\pm}

- Набор π^\pm отбирается из событий $e^+e^- o \phi(1020) o \pi^+\pi^-\pi^0$ в пике $\phi(1020)$ следующими условиями отбора:
 - 1) в событии ровно 2 противоположно заряженных «хороших» трека, т.е. трека с импульсами > 60 МэВ/с, $|\rho|$ < 0.6 см, |z| < 12 см и полярными углами от 1.0 до π 1.0 рад
 - 2) в событии есть хотя бы одна пара фотонов с $E_{\gamma} > 40$ МэВ такая, что её $\chi^2_{\rm 4C}$ (в предположении сохранения энергии-импульса) вместе с парой треков <50. Если при этом после кин. фита $|m_{2\gamma}-m_{\pi^0}|<40~{\rm M}$ эВ/ c^2 , то событие $e^+e^-\to\pi^+\pi^-\pi^0$ считается восстановленным
- Спектры dE/dx_{summ} и dE/dx_{diff} в эксперименте и моделировании хорошо согласуются, несмотря на возможную неточность моделирования ядерных взаимодействий

фита $|m_{2\gamma}-m_{\pi^0}|<40~{\rm MpB/c^2}$, то событие $e^+e^-\to\pi^+\pi^-\pi^0$ считается восстановленным 3-м (посередине) и 5-м (справа) двойных слоях для π^\pm , отобранных из событий процесса $e^+e^-\to\pi^+\pi^-\pi^0$ в эксперименте (маркеры) и моделировании корошо (серая гистограмма). Энергия в с.ц.м. равна 1019 МэВ (пик $\phi(1020)$ -мезона).

data/MC сравнение спектров BDT: π^{\pm}

- Спектры BDT в эксперименте и моделировании хорошо согласуются
- Сила e/π разделения оценивается по зависимости эффективности подавления e^- от эффективности отбора π^- (ROC-кривая) для BDT(e^- , π^-) при различных импульсах

Рисунок 2.38 — Спектры BDT (e^{\pm}, π^{\pm}) (слева), BDT (μ^{\pm}, π^{\pm}) (посередине) и BDT (π^{\pm}, K^{\pm}) (справа) для π^{\pm} , отобранных из событий процесса $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$ в эксперименте (маркеры) и моделировании (серая гистограмма). Энергия в с.ц.м. равна 1019 МэВ (пик ϕ (1020)-мезона).

 π^- selection Рисунок 2.39 — Зависимость $|\varepsilon_{\rm exp} - \varepsilon_{\rm MC}|$ от BDT_{cut} для классификаторов Рисунок 2.40 — ROC-кривые классификатора BDT (e^-,π^-) при различных ВDТ (e^\pm,π^\pm) (слева) и BDT (π^\pm,K^\pm) (справа) и π^\pm , отобранных из событий импульсах частиц (см. легенду) согласно моделированию. процесса $e^+e^- \to \pi^+\pi^-\pi^0$ при энергии в с.ц.м. 1019 МэВ.

data/MC сравнение спектров мультиклассификаторов BDT: π^{\pm}

Рисунок 2.55: Спектры откликов BDT (e^{\pm}) (слева) и BDT (μ^{\pm}) (справа) мультиклассификатора для π^{\pm} , отобранных из событий процесса $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$ в эксперименте (маркеры) и моделировании (серая гистограмма). Энергия в с.ц.м. равна 1019 МэВ (пик $\phi(1020)$ -мезона).

Рисунок 2.56: Спектры откликов BDT(π^{\pm}) (слева) и BDT(K^{\pm}) (справа) мультиклассификатора для π^{\pm} , отобранных из событий процесса $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ в эксперименте (маркеры) и моделировании (серая гистограмма). Энергия в с.ц.м. равна 1019 МэВ (пик ϕ (1020)-мезона).

data/MC сравнение спектров BDT: K^{\pm}

- Набор K^{\pm} отбирается из четырехтрековых событий $e^+e^- \to K^+K^-\pi^+\pi^-$ во всех точках по энергии заходов 2019-го года от порога реакции до 2.0 ГэВ
- K/π -разделение проводится на основе dE/dx_{DC}
- Отбор событий состоит в наложении условий на полную энергию и полный импульс частиц в событии
- Спектры dE/dx_{summ} и dE/dx_{diff} в эксперименте и моделировании неплохо согласуются

Рисунок 2.41 — Спектры dE/dx_{sum} (вверху) и dE/dx_{diff} (внизу) в 1-м (слева), 3-м (посередине) и 5-м (справа) двойных слоях для K^{\pm} , отобранных из событий процесса $e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}$ в эксперименте (маркеры) и моделировании (серая гистограмма). Использованны данные всех заходов 2019-го года.

data/MC сравнение спектров BDT: K^{\pm}

- Спектры откликов ВDТ в моделировании выглядят несколько искаженными при импульсах < 400 МэВ (предположительно, из-за неточности моделирования ядерных взаимодействий)
- При импульсах > 400 МэВ искажение исчезает

Рисунок 2.42 — Спектры BDT(e^{\pm} , K^{\pm}) (сверху), BDT(μ^{\pm} , K^{\pm}) (посередине) и BDT(π^{\pm} , K^{\pm}) (снизу) для K^{\pm} и π^{\pm} , отобранных из событий процесса $e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}$ в эксперименте (заполненные кружки для K^{\pm} и пустые кружки для π^{\pm}) и в моделировании (серая гистограмма для K^{\pm} и открытая гистограмма для π^{\pm}). Картинки слева нарисованы для частиц с импульсом меньше 400 МэВ, справа — выше 400 МэВ. Использованы данные всех заходов 2019-го года.

data/MC сравнение спектров мультиклассификаторов BDT: K^{\pm}

Рисунок 2.61: Спектры BDT (e^{\pm}) (слева) и BDT (μ^{\pm}) (справа) для K^{\pm} и π^{\pm} с импульсами больше 400 МэВ, отобранных из событий процесса $e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}$ в эксперименте (заполненные кружки для K^{\pm} и пустые кружки для π^{\pm}) и в моделировании (серая гистограмма для K^{\pm} и открытая гистограмма для π^{\pm}). Использованы данные всех заходов 2019-го года.

Рисунок 2.62: Спектры BDT(π^{\pm}) (слева) и BDT(K^{\pm}) (справа) для K^{\pm} и π^{\pm} с импульсами больше 400 MэB, отобранных из событий процесса $e^+e^-{\to}K^+K^-\pi^+\pi^-$ в эксперименте (заполненные кружки для K^{\pm} и пустые кружки для π^{\pm}) и в моделировании (серая гистограмма для K^{\pm} и открытая гистограмма для π^{\pm}). Использованы данные всех заходов 2019-го года.

data/MC сравнение спектров BDT: K^{\pm}

Рисунок 2.43 — Зависимость $|\varepsilon_{\rm exp} - \varepsilon_{\rm MC}|$ от BDT_{cut} для классификаторов BDT (e^{\pm}, K^{\pm}) (слева), BDT (μ^{\pm}, K^{\pm}) (посередине) и BDT (π^{\pm}, K^{\pm}) (справа) и K^{\pm} с импульсами больше 400 МэВ, отобранных из событий процесса $e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}$.

data/MC сравнение спектров BDT: K^{\pm}

- ROC-кривые для π/K классификатора показаны (сплошные кривые) на рисунке в сравнении с аналогичными кривыми для π/K -разделения по dE/dx_{DC} (штрихованные кривые)
- Видно, что классификация по dE/dx_{LXe} работает при импульсах от 600 до 900 МэВ/с, где идентификация по ДК невозможна

Рисунок 2.45 — ROC-кривые для π^-/K^- разделения на основе $dE/dx_{\rm DC}$ и классификатора ${\rm BDT}(\pi^-,K^-)$ для различных импульсов частиц согласно моделированию. Типы классификаторов и импульсы частиц указаны в легендах.

Пример 1: коллинеарные процессы ниже $\phi(1020)$

data

■ MC e⁺e⁻

∭∭ MC μ⁺μ⁻

MC $\pi^+\pi^-$

MC cosmic µ±

 $E_{beam} = 280 \text{ MeV}$

- Отбираются коллинеарные события при энергиях $E_{c.m.} < m_{\phi(1020)} c^2$
- Вклад космики в моделировании нормируется по событиям с импульсами $> 1.25 \cdot E_{beam}/c$
- Классификатор $(BDT(e^-,\pi^-) + BDT(e^+,\pi^+))/2$ может

Пример 2: выделение событий $e^+e^- \to K^+K^-$ выше $\phi(1020)$

- Идентификация по dE/dx_{LXe} делает возможным разделение сигнала и фона в анализе процесса $e^+e^- \to K^+K^-$ при энергиях выше 1.6 ГэВ
- Разделение сигнала и фона проводится по переменной δE :

$$\delta E = \frac{\sqrt{m_K^2 + p_1^2} + \sqrt{m_K^2 + p_2^2} + |p_{1,z} + p_{2,z}|}{\sqrt{s}} - 1$$

• После подавления фона разделение сигнала и фона по δE становится возможным

Заключение по части 2

- Была разработана процедура идентификации заряженных частиц с LXe калориметром детектора КМД-3
- Для достижения согласия спектров BDT в эксперименте и моделировании была разработана и применена процедура калибровки полосковых каналов с точностью ≤ 1%, а также проведена тщательная настройка отклика полосковых каналов в моделировании
- Было продемонстрировано согласие спектров BDT в эксперименте и моделировании для $e^{\pm}, \, \mu^{\pm}, \, \pi^{\pm}, \, K^{\pm}$
- Применение разработанной процедуры идентификации проиллюстрировано на примерах разделения конечных состояний $e^+e^-(\gamma)$ и $\pi^+\pi^-(\gamma)$ при $E_{c.m.} < m_{\phi(1020)}$ и отборе конечного состояния K^+K^- при $E_{c.m.} \sim 2$ ГэВ

Формальная часть

Цели и задачи

Целью первой части диссертационного исследования являлось изучение процесса $e^+e^- o K^+K^-\eta$ с детектором КМД-3, для чего требовалось решить следующие **задачи**:

- 1. Выделить события процесса $e^+e^- \to K^+K^-\eta$ на основе 59.5 $\pi 6^{-1}$ интегральной светимости, набранной с детектором КМД-3 в 2011-2012 и 2017-м годах в диапазоне $E_{c.m.}$ от 1.59 до 2.007 ГэВ
- 2. На основе выделенных событий изучить промежуточную динамику процесса и измерить его видимое сечение
- 3. Путем аппроксимации сечения процесса $e^+e^- \to \phi\eta$ определить параметры $\phi(1680)$
- 4. Вычислить вклад процесса $e^+e^- \to K^+K^-\eta$ в аномальный магнитный момент мюона

Целью второй части диссертационного исследования являлась разработка процедуры идентификации заряженных частиц с использованием LXe калориметра детектора КМД-3, для чего требовалось решить следующие **задачи**:

- 1. Предложить идею процедуры идентификации частицы на основе информации об её энерговыделении в слоях LXe калориметра
- 2. Разработать и применить процедуру калибровки полосковых каналов LXe калориметра с точностью $\lesssim 1\%$
- 3. Произвести настройку отклика полосковых каналов в моделировании
- 4. Осуществить сравнение спектров откликов классификаторов, используемых для идентификации частиц, в эксперименте и моделировании для всех типов частиц
- 5. Продемонстрировать применение разработанной процедуры идентификации для выделения событий эксклюзивных адронных процессов

Научная новизна

- 1. Измерено сечение процесса $e^+e^- o \phi\eta$ в диапазоне $E_{c.m.}$ от 1,59 до 2,007 ГэВ со статистической точностью лучше, чем в предыдущих экспериментах. Аппроксимация измеренного сечения позволила определить параметры $\phi(1680)$ с лучшей к настоящему времени статистической точностью
- 2. Впервые была разработана процедура идентификации типа заряженной частицы с использованием информации с нескольких слоев многослойного ионизационного калориметра на основе жидкого ксенона

Теоретическая и практическая значимость исследования

- 1. Улучшение точности измерения сечения процесса $e^+e^- o \phi\eta$ позволяет уточнить его вклад в аномальный магнитный момент мюона
- 2. Уточнение параметров $\phi(1680)$ обладает научной ценностью и само по себе, и с точки зрения использования этих параметров для описания промежуточной динамики и сечений других адронных процессов
- 3. Разработанная процедура идентификации типа частицы имеет большое значение для подавления фона при анализе ряда адронных процессов с КМД-3. Кроме того, продемонстрированная в данной работе принципиальная возможность идентификации адронов с ионизационным многослойным калориметром на основе жидкого ксенона стимулирует интерес к калориметрам подобного типа

Методология и методы исследования

Методологической основой диссертационного исследования являются экспериментальные методы исследования, включая методы статистической обработки данных и моделирования методом Монте-Карло, а также методы машинного обучения (бустированные деревья принятия решений, BDT), примененные к задаче идентификации частиц

Положения, выносимые на защиту

- На основе статистики, набранной детектором КМД-3 в 2011–2012 и 2017-м годах, наблюдается только один промежуточный механизм рождения конечного состояния $K^+K^-\eta$: $e^+e^- \rightarrow \phi \eta$.
- Используемая в анализе статистика позволяет измерить сечение процесса $e^+e^- \rightarrow \phi \eta$ с лучшей, чем в предыдущих экспериментах, статистической точностью, и систематической неопределенностью 5,1%.
- Аппроксимация измеренного сечения $e^+e^- \to \phi \eta$ позволяет определить параметры ϕ' -мезона с лучшей, чем в предыдущих экспериментах, статистической точностью и сравнимой с предыдущими измерениями систематической погрешностью.
- Разработанная процедура калибровки полосковых каналов LXе-калориметра с точностью ≤ 1% вместе с настройкой откликов полосковых каналов в моделировании позволяет получить приемлемое согласие экспериментальных и смоделированных спектров откли- ков классификаторов ВDT, используемых для идентификации типа заряженных частиц.
- Разработанная методика идентификации частиц с LXe-калориметром детектора КМД-3 эффективна в задачах идентификации e^{\pm} и π/K -разделении при импульсах 650–900 МэВ.

Степень достоверности и апробация результатов

По теме диссертации опубликовано 6 работ, из них 2 в научных журналах из списка ВАК и 4 в трудах конференций. Все 6 публикаций проиндексированы в базе данных Scopus

Результаты работы, составляющие материал диссертации, докладывались и обсуждались на научных семинарах ИЯФ СО РАН, а также на конференциях:

- 1. 10^{th} International Workshop on e^+e^- collisions from Phi to Psi (PHIPSI15, Hefei, China, 2015)
- 2. Instrumentation for Colliding Beam Physics (INSTR17, Novosibirsk, Russia, 2017)
- 3. 10th International Workshop on Ring Imaging Cherenkov Detectors (RICH 2018, Moscow, Russia, 2018)
- 4. The European Physical Society Conference on High Energy Physics (EPS-HEP 2019, Ghent, Belgium, 2019)

Объем и структура работы

Работа состоит из введения, двух глав и заключения. Первая глава посвящена изучению процесса $e^+e^- \to K^+K^-\eta$ с детектором КМД-3. Во второй главе рассказывается о разработанной автором процедуре идентификации заряженных частиц с использованием многослойного LXe-калориметра детектора КМД-3. Объем диссертации составляет 117 страниц с 99-ю рисунками и 5-ю таблицами. Список литературы содержит 61 наименование

Личный вклад соискателя

Личный вклад автора в получение научных результатов, лежащих в основе диссертации, является определяющим. Автором лично осуществлены все этапы изучения процесса $e^+e^- \to K^+K^-\eta$, включая создание Монте-Карло генераторов сигнального и ряда фоновых процессов, выделение сигнальных событий и определение эффективности их регистрации, измерение видимого сечения, вычисление радиационных поправок и аппроксимацию борновского сечения, оценку систематических погрешностей. Автором был предложен и реализован инклюзивный подход к изучению данного процесса, состоящий в рассмотрении η -мезона в качестве частицы отдачи. Далее, соискателем была предложена идея процедуры идентификации частиц с LXe-калориметром детектора КМД-3. Им лично был разработан пакет программного обеспечения, использующийся для калибровки полосковых каналов LXe-калориметра. Автором были определены коэффициенты прозрачности катодов LXe-калориметра и осуществлена настройка откликов полосковых каналов в моделировании минимально ионизирующих и ливнеобразующих частиц. Наконец, соискателем было продемонстрировано согласие спектров откликов классификаторов BDT, использующихся в процедуре идентификации, в эксперименте и моделировании для всех типов частиц. Вклад соискателя в опубликованные работы по теме диссертации является определяющим.

Публикации по теме диссертации (1)

- 1. Charged particle identification with the liquid xenon calorimeter of the CMD-3 detector / V. L. Ivanov, G. V. Fedotovich, R. R. Akhmetshin [et al.]. Текст: электронный // Nuclear Instruments and Methods in Physics Research Section A. 2021. Vol. 1015. Р. 165761. URL: https://doi.org/10.1016/j.nima.2021.165761. Дата публикации: 24.08.2021. [Scopus, 17 ctp.]
- 2. Study of the process $e^+e^- \rightarrow K^+K^-\eta$ with the CMD-3 detector at the VEPP-2000 collider / V. L. Ivanov, G. V. Fedotovich, R. R. Akhmetshin [et al.]. Текст : электронный // Physics Letters B. 2019. Vol. 798. P. 134946. URL: https://doi.org/10.1016/j.physletb.2019.134946. Дата публикации: 18.09.2019. [Scopus, 10 ctp.]
- 3. **Ivanov, V. L.** Measurement of hadronic cross sections at CMD-3 / V. L. Ivanov. Текст: электронный // Proceedings of Science: Proceedings of European Physical Society Conference on High Energy Physics (Ghent, 10–17 July 2019). Italy, 2020. Vol. 364. P. 510. URL: https://doi.org/10.22323/1.364.0510. Дата публикации: 13.10.2020. **[Scopus, 7 crp.]**

Публикации по теме диссертации (2)

- 4. Charged particle identification using the liquid Xenon calorimeter of the CMD-3 detector / V. L. Ivanov, G. V. Fedotovich, A. V. Anisenkov [et al.]. Текст: электронный // Nuclear Instruments and Methods in Physics Research Section A: Proceedings of the 10th Workshop on Ring Imaging Cherenkov Detectors (Moscow, 29 July 4 August 2018). Netherlands, 2020. Vol. 952. P. 161971. URL: https://doi.org/10.1016/j.nima.2019.03.026. Дата публикации: 13.03.2019. [Scopus, 3 ctp.]
- 5. Charged particle identification with the liquid Xenon calorimeter of the CMD-3 detector / V. L. Ivanov, G. V. Fedotovich, A. V. Anisenkov [et al.]. Текст: электронный // Journal of Instrumentation: Proceedings of the International Conference on Instrumentation for Colliding Beam Physics (Novosibirsk, 27 February 3 March 2017). UK, 2017. Vol. 12, nr 09. P. C09005. URL: https://doi.org/10.1088/1748-0221/12/09/C09005. Дата публикации: 07.09.2017. [Scopus, 9 crp.]
- 6. Study of $e^+e^- \rightarrow K^+K^-\eta$ process with the CMD-3 detector at VEPP-2000 collider / V. L. Ivanov, A. N. Amirkhanov, A. V. Anisenkov [et al.]. Текст: непосредственный // Journal of University of Science and Technology of China: Proceedings of the 10th International Workshop on e^+e^- Collisions from ϕ to ψ (Hefei, 23–26 September 2015). Hefei, 2016. Vol. 46. P. 502–506. [Scopus, 5 crp.]

BACKUP

Степень разработанности темы исследования

Относительно степени разработанности темы второй части диссертации заметим, что идентификация частицы по характеру её энерговыделения в многослойном ионизационном калориметре осуществлялась ранее во многих экспериментах. Так, сэмплинг-калориметры на основе жидкого аргона были разработаны для детекторов Н1 (коллайдер HERA) [20], DØ (коллайдер Tevatron) [21] и ATLAS (коллайдер LHC) [22]. В этих калориметрах информация о продольном и поперечном профиле энерговыделения частицы использовалась, главным образом, для e^{\pm}/π^{\pm} -разделения и идентификации адронных струй. Кроме того, информация с калориметра на основе жидкого криптона использовалась для e^{\pm}/μ^{\pm} -разделения в экспериментах NA48 [23] и NA62 [24] (ЦЕРН).

Во всех перечисленных экспериментах идентификация осуществлялась для частиц с характерными энергиями в десятки ГэВ. В силу этого мы можем утверждать, что разработанная нами процедура идентификации частиц является первым успешным опытом создания подобной процедуры для частиц с импульсами до 1 ГэВ и с использованием ксенона в качестве рабочего вещества калориметра.

Перспективы

Перспектива дальнейшего изучения процесса $e^+e^- \rightarrow K^+K^-\eta$ с детектором КМД-3 связана с увеличением доступной для анализа статистики примерно на порядок в ходе продолжающихся экспериментов на коллайдере ВЭПП-2000. Это позволит в существенно уменьшить статистические и систематические ошибки измерения сечения и измерения параметров ϕ' .

Развитие методики идентификации частиц с LXe калориметром детектора КМД-3 может заключаться в создании единой системы идентификации, использующей информацию с других подсистем детектора: дрейфовой камеры, СsI калориметра, мюонной системы. Помимо этого, в связи с разрабатываемым в настоящее время в ИЯФ СО РАН проектом детектора Супер Чарм-Тау Фабрики рекомендуется изучить возможность и целесообразность использования в последнем ионизационного калориметра на основе сжиженного благородного газа по типу LXe калориметра детектора КМД-3.

Пример: коллинеарные процессы ниже $\phi(1020)$

Пример: коллинеарные процессы ниже $\phi(1020)$

