

Федеральное государственное бюджетное учреждение науки Институт ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук (ИЯФ СО РАН)

Изучение процесса $e^+e^- \to K^+K^-\eta$ с детектором КМД-З

Иванов Вячеслав Львович

по материалам диссертации на соискание ученой степени

кандидата физико-математических наук

по научной специальности 1.3.15. Физика атомных ядер и элементарных частиц, физика высоких энергий

Научный руководитель: Федотович Геннадий Васильевич

доктор физ.-мат. наук

ОИЯИ, Дубна, 12.04.2023

- 1. Изучение процесса $e^+e^- \to K^+K^-\eta$ с детектором КМД-3
- 2. Идентификация заряженных частиц с жидкоксеноновым калориметром детектора КМД-3

Часть 1: Изучение процесса $e^+e^- \to K^+K^-\eta$ с детектором КМД-3

ВЭПП-2000

Детектор КМД-3

- Энергия до 2.01 ГэВ в с.ц.м.
- Достигнута светимость $L = 7 \times 10^{31} \text{см}^{-2} \text{c}^{-1}$
- Разброс энергии в пучке ~ 0.7 МэВ
- Время между столкновениями пучков ~80 нс

Рисунок 1.1 — Схема детектора КМД-3: 1 — вакуумная камера, 2 — дрейфовая камера, 3 — ВGO калориметр, 4 — Z-камера (ZC), 5 — сверхпроводящий соленоид, 6 — LXe калориметр, 7 — время-пролетная система (TOF), 8 — CsI калориметр, 9 — ярмо.

Процесс $e^+e^- \rightarrow K^+K^-\eta$

- Процесс изучался с детектором BABAR (и, на меньшей статистике, СНД):
 - 1. в канале $\eta \to \gamma \gamma$ (~480 сигнальных событий)
 - 2. в канале $\eta \to \pi^+ \pi^- \pi^0$ (~250 сигнальных событий)
- Было найдено, что доминирует канал $\phi'(1680) \to \phi(1020)\eta \Rightarrow$ возможно измерение параметров $\phi'(1680)$
- Наш анализ проводился на основе интегральной светимости 59.5 пб⁻¹, набранной с КМД-3 в 2011, 2012 и 2017 гг.

5

Монте-Карло генератор событий $e^+e^- \to K^+K^-\eta$

Отбор событий: «хорошие треки»

- Требуется, чтобы в событии было ровно 2 «хороших» трека с противоположными зарядами
- «Хорошим» считается трек:
- 1.Вылетающийизобластивзаимодействияпучков $|\rho| < 0.5$ см, |z| < 12 см
- 2. Имеющий полярный угол $0.9 < \theta < \pi 0.9$
- 3. Поперечный импульс > 60 МэВ/с
- Для положительно заряженной 4. частицы удельные ионизационные потери В dE/dx_{DC} дрейфовой камере меньше, чем протонов V С соответствующим импульсом

Отбор событий: «хорошие треки»

Рисунок 1.4: Распределение $dE/dx_{\rm DC}$ в зависимости от импульса для положительно заряженных частиц в событиях с более чем одним треком в ДК в эксперименте при $E_{\rm c.m.} = 2,007$ ГэВ. Красная кривая соответствует $dE/dx_{\rm DC, protons}(p)$.

Отбор событий

В моделировании dE/dx_{DC} для каонов и пионов разыгрывается по функциями плотности вероятности $f_{K/\pi}(p, dE/dx_{DC})$, найденным в эксперименте в каждой точке по энергии. Вычисляется функция правдоподобия для гипотезы двух каонов:

$$L_{2K} = \sum_{i=1}^{2} \ln \left(\frac{f_K(p_i, dE/dx_{DC,i})}{f_K(p_i, dE/dx_{D,i}) + f_\pi(p_i, dE/dx_{DC,i})} \right)$$

• Для отбора каонов применяется условие $L_{2K} > -0.3$:

- Перебираются все пары фотонов с энергией
 > 40 МэВ и проводится кинематический фит (требуется сохранение энергии и импульса)
- Для (грубого) выделения сигнала требуем $\chi^2 < 75$

Отбор событий

Отбор событий

Отобранные события с $m_{inv,2K} < 1050 \text{ MeV/c}^2$

• Угловые распределения частиц в отобранных в эксперименте событиях не противоречат моделированию:

Событие $K^+K^-\eta$, $\eta \to \gamma\gamma$ в детекторе КМД-3

ho - z проекция

Отбор событий и разделение сигнала и фона

- В дальнейшем мы изучаем процесс как e⁺e⁻ → φη → K⁺K⁻η, при этом η рассматривается как частица отдачи. Это позволяет увеличить число сигнальных событий (ценой увеличения фона)
- Рассматриваем события с $m_{\rm inv,2K} < 1050 \; {\rm MeV/c^2}$
- Основными фоновыми конечными состояниями являются $K^+K^-\pi^+\pi^-$ и $K^+K^-\pi^0\pi^0$
- Разделение сигнала и фона проводится аппроксимацией распределения «дисбаланса» энергии в событии:

Разделение сигнала и фона

• Сигнальный пик в моделировании фитируется тремя гауссами:

$$f_{\text{sig}}^{\text{MC}}(x) = a_0 \Big(a_1 G(x, \mu_1, \sigma_1) + a_2 G(x, \mu_2, \sigma_2) + (1 - a_1 - a_2) G(x, \mu_3, \sigma_3) \Big) \qquad G(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)$$

 В эксперименте к форме сигнального пика добавляется сдвиг *б*х и уширение *δ*σ, фон фитируется линейной функцией:

$$f_{\text{sig}}^{\text{exp}}(x) = a_0 \Big(a_1 G(x, \mu_1 + \delta x, \sqrt{\sigma_1^2 + \delta \sigma^2}) + a_2 G(x, \mu_2 + \delta x, \sqrt{\sigma_2^2 + \delta \sigma^2}) + (1 - a_1 - a_2) G(x, \mu_3 + \delta x, \sqrt{\sigma_3^2 + \delta \sigma^2}) \Big)$$

• Всего в эксперименте выделено 3009 ± 67 сигнальных событий

Разделение сигнала и фона (2011)

Разделение сигнала и фона (2012)

Разделение сигнала и фона (2017)

Эффективность триггера

Поправки к эффективности реконструкции треков

- В области полярных углов 1.0 < θ < π − 1.0 эффективность регистрации треков каонов в моделировании и эксперименте согласуется с точностью 1% (проверено в анализах процессов e⁺e⁻ → K⁺K⁻, K⁺K⁻π⁺π⁻)
- Отбираем события, в которых один каон летит в «хорошую» область $1.1 < \theta < \pi 1.1$, а второй куда угодно
- Выбираем события под сигнальным пиком -40 МэВ < ΔE < 20 МэВ (т.к. кинематика сигнального процесса моделируется надежно)

Поправки к эффективности реконструкции треков

- $K^+K^-\eta$ эффективности отбора Поправка К • вычисляется как свертка поправки К эффективности для каонов С угловыми распределениями реконструированных каонов в моделировании:
- Применение поправки делает оценку полного числа рожденных сигнальных событий не зависящей от отбора по θ:

Вычисление и аппроксимация сечения

- Поправленная эффективность регистрации: $arepsilon = arepsilon_{
 m MC}(1+\delta_{
 m eff})arepsilon_{
 m trig}$
- Сечение вычисляется по формуле: $\sigma_{\text{Born}} = \frac{\sigma_{\text{vis}}}{1 + \delta_{\text{rad}}} = \frac{N_{\text{sig.events}}}{L\varepsilon(1 + \delta_{\text{rad}})\mathcal{B}_{K^+K^-}^{\phi}}$

Аппроксимация сечения

• Для фита сечения можно использовать квазидвухчастичную или трехчастичную формулы:

$$\begin{split} \sigma_{\phi\eta}(s) &= 12\pi \frac{|\vec{p}_{\phi}(\sqrt{s})|^{3}}{s^{3/2}} \left| \frac{a_{\mathrm{n.r.}}e^{i\Psi_{\mathrm{n.r.}}}}{s} + \sqrt{\frac{(\Gamma_{ee}^{\phi}\mathcal{B}_{\phi\eta}^{\phi'})\Gamma_{\phi'}m_{\phi'}^{3}}{|\vec{p}_{\phi}(m_{\phi'})|^{3}}} D_{\phi'}(s) \right|^{2} & \xrightarrow{1}{0.25} \\ \sigma_{\phi\eta}(s) &= \frac{27\Gamma_{\phi}m_{\phi}^{2}}{\pi^{2}|\vec{p}_{K}(m_{\phi})|^{3}s}F(s) \left| \frac{a_{\mathrm{n.r.}}e^{i\Psi_{\mathrm{n.r.}}}}{s} + \sqrt{\frac{(\Gamma_{ee}^{\phi}\mathcal{B}_{\phi\eta}^{\phi'})\Gamma_{\phi'}m_{\phi'}^{3}}{|\vec{p}_{\phi}(m_{\phi'})|^{3}}} D_{\phi'}(s) \right|^{2}, & \xrightarrow{0.15} \\ F(s) &= \int |\vec{p}_{K^{+}} \times \vec{p}_{K^{-}}|^{2}\sin^{2}(\theta_{\mathrm{normal}})|D_{\phi}(p_{\phi}^{2})|^{2}d\Phi_{K^{+}K^{-}\eta}(\sqrt{s}), & \xrightarrow{1.6\ 1.65\ 1.7\ 1.75\ 1.8\ 1.85\ 1.9\ 1.95\ 2} \\ E_{\mathrm{cm}}, \operatorname{GeV} \end{split}$$

- Различие между ними сравнимо с систематической ошибкой измерения сечения (5%), поэтому мы используем трехчастичную формулу
- Зависимость ширины $\phi'(1680)$ от квадрата четырех-импульса учитывается как

$$\Gamma_{\phi'}(s) = \Gamma_{\phi'} \left[\mathcal{B}_{K^*(892)K}^{\phi'} \frac{\mathcal{P}_{K^*(892)K}(s)}{\mathcal{P}_{K^*(892)K}(m_{\phi'}^2)} + \mathcal{B}_{\phi\eta}^{\phi'} \frac{\mathcal{P}_{\phi\eta}(s)}{\mathcal{P}_{\phi\eta}(m_{\phi'}^2)} + \mathcal{B}_{\phi\sigma}^{\phi'} \frac{\mathcal{P}_{\phi\sigma}(s)}{\mathcal{P}_{\phi\sigma}(m_{\phi'}^2)} \right] \\ \mathcal{B}_{K^*(892)K}^{\phi'} = 0.7, \ \mathcal{B}_{\phi\eta}^{\phi'} = 0.2 \quad \mathcal{B}_{\phi\sigma}^{\phi'} = 0.1$$

Аппроксимация сечения

Аппроксимация сечения

CMD-3

BABAR

Параметризация через	$\Gamma^{\phi'}_{ee} {\cal B}^{\phi'}_{\phi\eta} \qquad \qquad {\cal B}^{\phi'}_{e^+e^-} {\cal B}^{\phi'}_{\phi\eta}$		$\frac{\chi^2}{n.d.f.} = \frac{18}{160}$	$\frac{34.9}{0-16} = 1.28$
Параметр	Значение	R with $I = 0$	ϕ'	ϕ''
$\chi^2/\mathrm{n.d.f}$ $\Gamma^{\phi'} \mathcal{B}^{\phi'}$ aB	$93,8/79 \approx 1,19$ $94 \pm 13_{\text{stat}} \pm 15_{\text{sust}}$ -	$\Gamma^R_{ee} \mathcal{B}^R_{KK^*(892)}(\mathrm{eV})$	367 ± 47	-
$\mathcal{B}^{\phi'}_{\pm\pm} = \mathcal{B}^{\phi'}_{\pm\pm}, 10^{-6}$	$- 0.53 \pm 0.06_{\text{stat}} \pm 0.09_{\text{syst}}$	$\Gamma^R_{ee} \mathcal{B}^R_{\phi\eta}(\mathrm{eV})$	154 ± 32	$1.7{\pm}0.8$
$m_{\phi'}^{e+e}$, MəB	$1667 \pm 5_{\text{stat}} \pm 11_{\text{syst}}$	$1 - \mathcal{B}^R_{KK^*(892)} - \mathcal{B}^R_{\phi\eta}$	$0.33 {\pm} 0.14$	
$\Gamma_{\phi'}, \mathrm{M}$ эВ	$176 \pm 23_{\text{stat}} \pm 38_{\text{syst}}$	$M_R({ m MeV})$	1709 ± 19	2127 ± 24
$a_{\rm n.r.}, { m M}$ эВ	$1,1\pm0,6_{\rm stat}$	$\Gamma_R(MeV)$	325 ± 68	60 ± 50
$\Psi_{\mathrm{n.r.}}$	$0,14\pm0,67_{\rm stat}$	$\sigma^{ m bkg}_{KK^*(892)}(M^2_{\phi'})({\rm nb})$	$0.8{\pm}0.3$	-
		$\sigma^{ m bkg}_{\phi\eta}(M^2_{\phi'})({ m nb})$	(4.7 ± 1.4)	$1) \times 10^{-3}$

Систематические неопределенности измерения сечения

- Мы оцениваем систематическую неопределенность, относящуюся к определенному критерию отбора, как относительную вариацию величины *N*_{sig.tot.} при вариации (или включении/выключении) этого отбора
- Пределы варьирования отбора выбираются как можно более широкими при соблюдении двух условий: 1) отбор не подавляет значительную (>5%) долю сигнала; 2) форма фона по-прежнему разумно описывается суммарным вкладом конечных состояний K⁺K⁻π⁰π⁰ и K⁺K⁻π⁺π⁻
- Условия отбра по ρ_{PCA}, z_{PCA}, p_⊥ и dE/dx_{DC} < dE/dx_{DC,protons} для положительно заряженных частиц, применяемые на этапе отбора "хороших" треков, дают систематику 1.0, 0.5, 0.3 и 0.4%, соответственно. Эти значения оцениваются путем включения/выключения соответствующих • отборов.
- Ограничение на L_{2K}, используемое для отбора каонов, варьировалось в пределах от -0.6 до -0.1. Соответствующая систематика равна 0.8%.
- Ограничение на m_{inv,2K}, использованное для отбора событий из области φ-мезона, варьировалось в пределах от 1050 до 1100 МэВ. Соответствующая неопределенность составляет 0.7%.
- Нижний предел распределения ΔE варьировался в пределах от -180 до -100 МэВ. Соответствующая неопределенность составляет 1%.
- Верхний предел распределения ΔE варьировался в пределах от 50 до 150 МэВ. Соответствующая неопределенность составляет 1%.
- Положение сигнального пика может быть фиксированным из моделирования (δx ≡ 0) или быть свободным параметром фита распределения ΔE в эксперименте. Связанная с этим систематическая неопределенность составляет 2%.

- Ширина сигнального пика может быть фиксирована из моделирования (δσ ≡ 0) или быть свободным параметром фита, соответствующая неопределенность составляет 2.5%.
- Форма фона при аппроксимации распределения ΔE в эксперименте может быть принята линейной со свободными параметрами, либо её параметры могут быть фиксированы из аппроксимации моделирования фона. Систематическая неопределенность составляет 2.3%.
- Неопределенность эффективности регистрации одиночных каонов оценивается в 1%, для пары каонов – 1.5%. Неопределенность поправки к эффективности отбора K⁺K⁻η, связанная с угловой зависимостью эффективности регистрации каонов (см. Раздел 1.2.3), оценивается в 1.5%.
- Систематическая ошибка измерения светимости равна 1% [25].
- Неопределенность бранчинга $\mathcal{B}^{\phi}_{K^+K^-}$ составляет ~1%.

Систематические неопределенности измерения сечения

Источник	Значение, %	
Отбор событий	1.6	
Разделение сигнала и фона	4.1	
Поправка к эффективности	2.1	
Светимость	1	
${\cal B}^{\phi}_{K^+K^-}$	1	
Итог	5.1	

Систематические неопределенности параметров $\phi'(1680)$

- Систематическая неопределенность измерения сечения в 5.1% вызывает аналогичную неопределенность в параметрах Γ^φ_{ee} 𝔅^φ_{φη} и 𝔅^{φ'}_{e+e}-𝔅^{φ'}_{φη}.
 Неопределенность бранчингов мод распада φ' обусловливает неопределенность формы пика φ' в сечении. Согласно [33] относительные неопределенности 𝔅^{φ'}_{K*(892)K}, 𝔅^{φ'}_{φη} и 𝔅^{φ'}_{φσ} могут быть оценены в 15%, 30% и 15%, соответственно. Вариация бранчингов в пределах этих неопределенности с ограничением 𝔅^{φ'}_{K*(892)K} + 𝔅^{φ'}_{φη} + 𝔅^{φ'}_{φσ} ≡ 1 приводит к неопределенности в 3 эВ для Γ^{φ'}_{ee}𝔅^{φ'}_{φη}, 4 МэВ для m_{φ'} и 13 МэВ для Γ_{φ'}.
- Вклад от неопределенности формы нерезонансной амплитуды изучался путем аппроксимации сечения с различными нерезонансными амплитудами: 0, a_{n.r.}, a_{n.r.}/s^{3/2}, a_{n.r.}/s, a_{n.r.}/√s, a_{n.r.}·√s, a_{n.r.}·s, где a_{n.r.} есть константа. Получающиеся неопределенности параметров φ' составляют 14 эВ для Γ^{φ'}_{ee} B^{φ'}_{φη}, 10 МэВ для m_{φ'} и 36 МэВ для Γ_{φ'}.

Вклад в $(g - 2)_{\mu}$

$$a_{\mu}^{\phi\eta}(E < E_{\max}) = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{E_{\min}^2}^{E_{\max}^2} \frac{ds}{s^2} K(s) \cdot \frac{\sigma(e^+e^- \to \phi\eta)|1 - \Pi(s)|^2}{\sigma_0(e^+e^- \to \mu^+\mu^-)}$$

CMD-3

 $a_{\mu}^{\phi\eta}(E < 1.8 \text{ GeV}) = (32.1 \pm 1.5_{\text{stat}} \pm 1.6_{\text{syst}}) \times 10^{-12}$ $a_{\mu}^{\phi\eta}(E < 2.0 \text{ GeV}) = (44.0 \pm 1.5_{\text{stat}} \pm 2.2_{\text{syst}}) \times 10^{-12}$

BABAR

 $a^{\phi\eta}_{\mu}(E < 1.8 \text{ GeV}) = (36 \pm 2_{\text{stat}} \pm 2_{\text{syst}}) \times 10^{-12}$ $a^{\phi\eta}_{\mu}(E < 2.0 \text{ GeV}) = (46 \pm 3_{\text{tot}}) \times 10^{-12}$

Заключение по части 1

- Процесс e⁺e⁻ → K⁺K⁻η изучен с детектором КМД-З на основе 59.5 пб⁻¹ данных, набранных в 2011, 2012 и 2017 годах
- Наблюдается вклад только промежуточного механизма $\phi \eta \to K^+ K^- \eta$
- Измерено сечение $e^+e^- \to \phi \eta$, из его аппроксимации определены параметры $\phi'(1680)$
- Уточнен вклад $\phi \eta$ в $(g 2)_{\mu}$

Часть 2:

Идентификация заряженных частиц с жидкоксеноновым калориметром детектора КМД-3

LXе-калориметр детектора КМД-3

Мотивация

- Заряженные K^{\pm} и π^{\pm} на КМД-З разделяются по dE/dx_{DC}
- Разделение одиночных K^{\pm} и π^{\pm} по dE/dx_{DC} возможно лишь до p < 550 MeV/c
- Для изучения конечных состояний K⁺K⁻, K⁺K⁻π⁰, K⁺K⁻π⁰π⁰ и др. при высоких энергиях полезна или даже необходима идентификация частиц с использованием dE/dx_{LXe} в нескольких слоях LXe

Общие замечания

•

Процедура идентификации

Для каждого трека в ДК считаются 6 откликов классификаторов BDT, натренированных на разделение определенных пар типов частиц в определенных диапазонах импульса Δ*p_i* и ожидаемой (по экстраполяции трека из ДК) длины пролета частицы в слое LXe Δ*d_{LXe,j}*:

 $BDT(e^{\pm}, \mu^{\pm}), BDT(e^{\pm}, \pi^{\pm}), BDT(e^{\pm}, K^{\pm}),$ $BDT(\mu^{\pm}, \pi^{\pm}), BDT(\mu^{\pm}, K^{\pm}), BDT(\pi^{\pm}, K^{\pm})$

 Входными переменными являются определенные линейные комбинации dE/dx_{LXe} в 12 слоях (внешний слой не используется из-за недолива ксенона)

- Каждый классификатор тренируется на ~150 · 10³ смоделированных событиях. Всего используется 55 диапазонов по импульсу с шагом 20 МэВ/с (от 100 до 1200 МэВ/с) и 8 диапазонов по d_{LXe}, итого имеем 2 × 6 × 55 × 8 = 5280 классификаторов
- Помимо перечисленных выше классификаторов на основе событий со всеми разделяемыми типами частиц мы тренируем 2 × 55 × 8 = 880 мультиклассификаторов BDT. Для каждого трека в ДК один мультиклассификатор вычисляет 4 отклика:
 BDT(e[±]) ("электронность"), BDT(µ[±]) ("мюонность"), BDT(π[±]) ("пионность"), BDT(K[±]) ("каонность"), характеризующих степень схожести данной частицы с частицами соответствующего типа
- Для хорошего согласия спектров откликов BDT в эксперименте и моделировании необходима точная калибровка полосковых каналов, а также настройка их отклика в моделировании

Моделирование отклика полосковых каналов

 Ток в полоске от дрейфа элемента ионизации:

$$\delta I_{\text{strip}}(t) = \dot{q}_{\text{strip}} = \delta q \cdot v_d \cdot \exp(-v_d t/\lambda) \left(\frac{\partial f(x_+ - x_0, y)}{\partial y} - \frac{\partial f(x_- - x_0, y)}{\partial y} \right)$$
$$\frac{\partial f(x, y)}{\partial y} = \frac{1}{h} \frac{1 - \exp(\pi x/h) \cos(\pi y/h)}{\exp(2\pi x/h) - 2\exp(\pi x/h) \cos(\pi y/h) + 1}$$

 Амплитуда полоски находится как максимум свертки токового сигнала с функцией отклика усилителяформирователя:

 Спектры *dE*/*dx*_{LXe} для минимально ионизирующих частиц существенно зависят от длины поглощения λ:

Рисунок 2.10 — Спектры $dE/dx_{\rm LXe}$ в 1-м слое LXe после калибровки среднего значения в моделировании с λ равным 100 мм (открытая гистограмма), 15 мм (серая гистограмма), 5 мм (горизонтальная штриховка) и 2 мм (вертикальная штриховка). Левая (правая) картинка соответствует моделированию μ^+ (e^+) с импульсом 1 ГэВ и равномерным распределением по телесному углу.

Калибровка полосковых каналов

- Была разработана процедура калибровки полосок по космическим мюонам, включающая три этапа:
 - «Выравнивание полосок» в слое 1)
 - «Выравнивание слоев» 2)
 - 3) Вычисление цены канала

Выравнивание полосок в слое

- Отбирается нецентральная космика с p > 1 GeV/c, с двух концов ДКтрека пришиваются два LXe-трека, кластерах которых отбираются ध авные полоски (полоски с макс. 860 главные полоски (полоски с макс. амплитудой) °555
- Number Number Number Максимумы спектров амплитуд **(ΓΠ)**, главных ПОЛОСОК нормированных на длину пролета частицы в слое ($dE/dx_{LXe}^{main\ strip}$), калибровочным коэфф-том K_1 приводятся к среднему положению максимума на данном катоде

20

10

Выравнивание полосок в слое

Учет модуляции K_1 по азимутальному углу

- На самом деле для космики не все полоски одинаковы, в моделировании наблюдается модуляция K₁ по φ ±1%. Она связана с остаточной зависимостью спектра dE/dx^{main strip} от наклона трека в слое
- Такая же модуляция наблюдается в эксперименте в разности коэффициентов K_1 , посчитанных по космике и по $e^+e^- \rightarrow \mu^+\mu^-$ (последний процесс, в отличие от космики, азимутально симметричен)
- Максимумы спектров ГП приводятся к этой модуляции

Выравнивание полосок: группировка заходов

 Для вычисления K₁ с точностью лучше 0.5% требуется ~10000 событий в гистограмме.
 Для достижения такой точности заходы группируются: для каждого захода вокруг него набирается минимально достаточное (для набора 10000 событий) количество ближайших по времени заходов

Выравнивание полосок: «грязный» ксенон

- В течение сезона варьируется чистота (доля электроотрицательных ксенона Поэтому примесей). более для правильного вычисления K_1 средняя амплитуда ГП ПО всем слоям калибруется предварительно 200-м приводится каналам (C К точностью 0.5%)
- 2017-й год был отмечен «грязным» ксеноном в течение 2/3 сезона:

2017-й год

Выравнивание средних амплитуд кластеров между слоями

- Средние по слоям коэффициенты усиления ЗЧУ неодинаковы + есть эффект от недолива ксенона
- Поэтому проводится выравнивание средних амплитуд кластеров в слоях (приведение их к их общему среднему)
- Такая же калибровка проводится для моделирования

• Цена канала вычисляется как

$$K_{3} = \frac{\sum_{l=1}^{7} \overline{dE/dx}_{\text{clust}}^{l,\text{MC}}}{\sum_{l=1}^{7} \overline{dE/dx}_{\text{clust}}^{l,\text{data}}} \cdot K_{3,\text{MC}}[\text{MeV/channel}]$$

где К_{3,МС} - цена канала в моделировании

Результаты калибровки

- После калибровки в экспериментальных спектрах dE/dx_{LXe} космики наблюдается уширение относительно моделирования
- Гипотеза: оно обусловлено сложной полосковой структурой катода (в моделировании катод описывается сплошной проводящей плоскостью)

Настройка МС для т.i.p.-ов

- Из-за наличия зазоров между полосками ионизация в одном зазоре наводит амплитуду в полосках другого зазора. По сравнению с обычной внутрислойной наводкой межслойная происходит с некоторым коэффициентом подавления, зависящим от положения ионизации в зазоре и от геометрии катода: ширины диэлектрика, полоски и зазора
- Средний коэффициент подавления по всем положениям ионизации в зазоре мы называем коэффициентом прозрачности T_l, l = 1 ... 7
- Прозрачность замешивает реальные энерговыделения в амплитуды, измеренные по верхним и нижним полоскам
- В дальнейшем мы работаем с полусуммой и полуразностью «реальных» энерговыделений. Эти величины в 6-ти слоях используются как входные переменные BDT

Настройка МС для т.і.р.-ов

5²⁵⁰⁰

Nu²⁰⁰⁰

1000

500

- В экспериментальных спектрах *dE/dx_{summ}* для космики наблюдается уширение, моделирование было поправлено на уровне оцифровщика добавлением коррелированного шума (для каждого хита) ~ √*E_{hit}* · *r* к амплитудам верхних и нижних полосок, где *r* распределено по гауссу. Сигма гаусса одинакова для всех слоев
- Спектры dE/dx_{diff} в эксперименте и моделировании сравниваются в отдельных слоях по dE/dx_{summ}

Разное положение максимумов в эксперименте и моделировании означает неправильность априори принятого коэффициента прозрачности (0.17), разная ширина пиков – необходимость введения уширения

- Положения пиков приводятся в соответствие подбором T_l в каждом слое
- Уширение в *dE/dx_{diff}* вводится антикоррелированной добавкой ~ $\sqrt{E_{hit}} \cdot r$ (*r* распределено по гауссу) к амплитудам верхних и нижних полосок. Эта добавка имитирует *перераспределение* заряда между нижними и верхними полосками из-за вариации коэффициента прозрачности относительно среднего

Настройка МС для m.i.p.-ов: dE/dx_{diff}

Настройка МС для m.i.p.-ов: dE/dx_{diff}

Настройка МС для m.i.p.-ов: dE/dx_{diff}

 Был опробован и другой способ определения T_l – численный расчет полей. Ставим в зазор равномерно заряженный брусок с диэл. проницаемостью ксенона, с размерами равными периоду полосковой структуры:

Считаем поля и интегрируем по поверхности нижних и верхних полосок. Отношение наведенных зарядов есть *T*_l

Слой	T_l (field/ dE/dx_{diff})
1	0.29 / 0.23
2	0.24 / 0.22
3	0.37 / 0.35
4	0.35 / 0.32
5	0.4 / 0.35
6	0.37 / 0.33
7	0.36 / 0.33

Настройка МС для электромагнитных ливней

 Наблюдается уширение спектра dE/dx_{summ} для e⁺e⁻. Т.к. амплитуды большие, добавочные шумы, применяемые для m.i.p.-ов, почти не влияют на моделирование

Для установления причин неточности моделирования ливней было проверено:

- Влияние Physics List GEANT4 нет эффекта
- Исследовалось влияние плотности ксенона и количества мертвого вещества перед ним.
 Добавлялось 0.0-0.3 X₀ вещества перед калориметром, это не позволяет воспроизвести наблюдаемое отличие
- Произведено сравнение спектров dE/dx_{LXe} от e⁺e⁻ в соответствующих точках заходов 2017 г. (грязный ксенон) и 2019 г. (чистый ксенон). Проверено, что влияние чистоты ксенона на форму спектров крайне мало. Моделирование с разными длинами поглощения ионизации подтверждает этот вывод.
- Итог: причины неточности моделирования ливней не установлены

• Для исправления оказалось достаточным линейного преобразования спектров dE/dx для e^{\pm} в моделировании:

$dE/dx[l] \rightarrow 1.055 \cdot (dE/dx[l] - 0.7)$

• После поправки согласие приемлемое:

• Поправка хорошо работает независимо от угла:

• Поправка хорошо работает независимо от энергии e^{\pm} :

• Поправка работает неплохо независимо от энергии e^{\pm} :

Ливень в первом слое

Эффективность классификаторов: общий взгляд

• Спектры откликов BDT в моделировании (распределение по d_{LXe} равномерное):

Эффективность мультиклассификаторов: общий взгляд

• Спектры откликов мультиклассификаторов BDT в моделировании (распределение по *d_{LXe}* равномерное):

data/MC сравнение спектров BDT: e^{\pm}

- e^{\pm} отбираются из событий $e^+e^- \to e^+e^-$ следующими условиями:
- есть ровно 2 противоположно заряженных центральных (|ρ|<0.5 см, |z|<12 см) трека в ДК
- 2) полярныеуглытреков $1.0 < \theta < \pi 1.0$
- 3) условие на коллинеарность треков по *θ* и *φ*:

 $| heta_1+ heta_2-\pi|<0.15$ рад

 $||\varphi_1 - \varphi_2| - \pi| < 0.15$ рад

- 4) энергия каждого из кластеров, пришитых к трекам > $E_{beam}/2$
- Спектры BDT в эксперименте и моделировании согласуются при любых энергиях e[±]

Рисунок 2.33 — Спектры BDT(e^{\pm}, μ^{\pm}) (слева), BDT(e^{\pm}, π^{\pm}) (посередине) и BDT(e^{\pm}, K^{\pm}) (справа) для заряженных частиц, выделенных условиями отбора, перечисленными в разделе 2.6.1. Маркеры соответствуют экспериментальным данным, серая гистограмма — моделированию конечного состояния e^+e^- , штрихованная гистограмма — моделированию конечных состояний e^+e^- , $\mu^+\mu^-$, $\pi^+\pi^-$ и космики. Верхние картинки соответствуют энергии пучков $E_{\text{beam}} = 280$ МэВ, нижние — $E_{\text{beam}} = 987,5$ МэВ. В последнем случае примесь конечных состояний, отличных от e^+e^- , пренебрежимо мала.

data/MC сравнение спектров мультиклассификаторов BDT: e[±]

состояний, отличных от e^+e^- , пренебрежимо мала.

состояний, отличных от e^+e^- , пренебрежимо мала.

data/MC сравнение спектров BDT: e^{\pm}

• В качестве количественной характеристики степени согласия спектров BDT в эксперименте и моделировании мы используем величину $|\varepsilon_{exp} - \varepsilon_{MC}|(BDT_{cut})$, где $\varepsilon_{exp/MC}(BDT_{cut}) - доли$ отбрасываемых событий при отборе $BDT < BDT_{cut}$. С точки зрения анализа данных нас интересует только значение $|\varepsilon_{exp} - \varepsilon_{MC}|(BDT_{cut})|$ вблизи предполагаемого значения BDT_{cut}

data/MC сравнение спектров BDT: μ^{\pm}

- μ[±] отбираются из событий космики следующим набором условий:
- 1. есть ровно 1 нецентральный трек в ДК (|ρ|>3 см);
- 2. импульс от 100 до 1200 МэВ/с;
- 3. энерговыделение частицы в калориметре < 400 МэВ
- Спектры BDT в эксперименте и моделировании хорошо согласуются

 $BDT(\mu^{\pm}, K^{\pm})$ для событий космики.

эксперименте (маркеры) и моделировании (серая гистограмма).

В ряде случаев в спектрах ВDT наблюдаются пикующиеся структуры. Для частиц типа bkg и sig в спектре классификатора BDT(bkg, sig) может наблюдаться серия пиков, если частицы типов bkg и/или sig могут претерпевать ядерные взаимодействия или распады, меняющие характер их дальнейшего взаимодействия с веществом калориметра. Например, в случае $bkg = \mu^+$ и $sig = K^+$:

- μ⁺ с малыми импульсами, останавливаясь в веществе перед калориметром или внутри него, в основном распадаются на e⁺ и пару нейтрино, порождая электромагнитный ливень и становясь, тем самым, более «похожими» на ядерновзаимодействующие K⁺
- K^+ распадается на μ^+ и нейтрино

data/MC сравнение спектров мультиклассификаторов BDT: μ^{\pm}

data/MC сравнение спектров BDT: π^{\pm}

Набор π^{\pm} отбирается из событий $e^+e^- \rightarrow \phi(1020) \rightarrow \pi^+\pi^-\pi^0$ в пике $\phi(1020)$ следующими условиями отбора:

1) в событии ровно 2 противоположно заряженных «хороших» трека, т.е. трека с импульсами > 60 МэВ/с, $|\rho| < 0.6$ см, |z| < 12 см и полярными углами от 1.0 до $\pi - 1.0$ рад

2) в событии есть хотя бы одна пара фотонов с $E_{\gamma} > 40$ МэВ такая, что её χ^2_{4C} (в предположении сохранения энергии-импульса) вместе с парой треков <50. Если при этом после кин. фита $|m_{2\gamma} - m_{\pi^0}| < 40$ МэВ/с², то событие $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ считается восстановленным

Спектры *dE/dx_{summ}* и *dE/dx_{diff}* в эксперименте и моделировании хорошо согласуются, несмотря на возможную неточность моделирования ядерных взаимодействий

фита $|m_{2\gamma} - m_{\pi^0}| < 40 \text{ МэВ/с}^2$, то событие $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ считается восстановленным спектры dE/dx_{summ} и dE/dx_{diff} в событий процесса $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ в эксперименте (маркеры) и моделировании серая гистограмма). Энергия в с.ц.м. равна 1019 МэВ (пик $\phi(1020)$ -мезона).

data/MC сравнение спектров BDT: π^{\pm}

- Спектры BDT в эксперименте и моделировании хорошо согласуются
- Сила e/π разделения оценивается зависимости ПО эффективности подавления еот эффективности отбора π^- (ROC-кривая) для BDT(*e*⁻, *π*⁻) при различных импульсах

Рисунок 2.39 — Зависимость $|\varepsilon_{exp} - \varepsilon_{MC}|$ от BDT_{cut} для классификаторов процесса $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ при энергии в с.ц.м. 1019 МэВ.

data/MC сравнение спектров мультиклассификаторов BDT: π^{\pm}

data/MC сравнение спектров BDT: K^{\pm}

 Набор K[±] отбирается из четырехтрековых событий e⁺e⁻ → K⁺K⁻π⁺π⁻ во всех точках по энергии заходов 2019-го года от порога реакции до 2.0 ГэВ

- K/π -разделение проводится на основе dE/dx_{DC}
- Отбор событий состоит в наложении условий на полную энергию и полный импульс частиц в событии
- Спектры dE/dx_{summ} и dE/dx_{diff} в эксперименте и моделировании неплохо согласуются

Рисунок 2.41 — Спектры dE/dx_{sum} (вверху) и dE/dx_{diff} (внизу) в 1-м (слева), 3-м (посередине) и 5-м (справа) двойных слоях для K[±], отобранных из событий процесса e⁺e⁻→K⁺K⁻π⁺π⁻ в эксперименте (маркеры) и моделировании (серая гистограмма). Использованны данные всех заходов 2019-го года.

data/MC сравнение спектров BDT: K^{\pm}

 Спектры откликов BDT в моделировании выглядят несколько искаженными при импульсах < 400 МэВ (предположительно, из-за неточности

моделирования ядерных взаимодействий)

При импульсах > 400 МэВ искажение исчезает

data/MC сравнение спектров мультиклассификаторов BDT: K^{\pm}

data/MC сравнение спектров BDT: K^{\pm}

data/MC сравнение спектров BDT: K^{\pm}

- ROC-кривые для π/К классификатора показаны (сплошные кривые) на рисунке в сравнении с аналогичными кривыми для π/К-разделения по dE/dx_{DC} (штрихованные кривые)
- Видно, что классификация по *dE/dx_{LXe}* работает при импульсах от 600 до 900 МэВ/с, где идентификация по ДК невозможна

Рисунок 2.45 — ROC-кривые для π^-/K^- разделения на основе $dE/dx_{\rm DC}$ и классификатора BDT (π^-, K^-) для различных импульсов частиц согласно моделированию. Типы классификаторов и импульсы частиц указаны в легендах.

Пример 1: коллинеарные процессы ниже $\phi(1020)$

- Отбираются коллинеарные события при энергиях $E_{c.m.} < m_{\phi(1020)} c^2$
- Вклад космики в моделировании нормируется по событиям с импульсами > 1.25 · E_{beam}/c
- Классификатор $(BDT(e^-,\pi^-) + BDT(e^+,\pi^+))/2$ может быть использован для e/π -разделения в задаче измерения формфактора пиона $|F_{\pi}|^2$

Пример 2: выделение событий $e^+e^- \to K^+K^-$ выше $\phi(1020)$

- Идентификация по dE/dx_{LXe} делает возможным разделение сигнала и фона в анализе процесса $e^+e^- \rightarrow K^+K^-$ при энергиях выше 1.6 ГэВ
- Разделение сигнала и фона проводится по переменной δ*E*:

$$\delta E = \frac{\sqrt{m_K^2 + p_1^2} + \sqrt{m_K^2 + p_2^2} + |p_{1,z} + p_{2,z}|}{\sqrt{s}} - 1$$

 После подавления фона разделение сигнала и фона по δ*E* становится возможным

Заключение по части 2

- Была разработана процедура идентификации заряженных частиц с LXe калориметром детектора КМД-3
- Для достижения согласия спектров BDT в эксперименте и моделировании была разработана и применена процедура калибровки полосковых каналов с точностью ≤ 1%, а также проведена тщательная настройка отклика полосковых каналов в моделировании
- Было продемонстрировано согласие спектров BDT в эксперименте и моделировании для e[±], µ[±], π[±], K[±]
- Применение разработанной процедуры идентификации проиллюстрировано на примерах разделения конечных состояний $e^+e^-(\gamma)$ и $\pi^+\pi^-(\gamma)$ при $E_{c.m.} < m_{\phi(1020)}$ и отборе конечного состояния K^+K^- при $E_{c.m.}$ ~2 ГэВ

Формальная часть

Цели и задачи

Целью первой части диссертационного исследования являлось изучение процесса *e*⁺*e*⁻ → *K*⁺*K*⁻η с детектором КМД-3, для чего требовалось решить следующие **задачи**:

- Выделить события процесса e⁺e⁻ → K⁺K⁻η на основе 59.5 пб⁻¹ интегральной светимости, набранной с детектором КМД-3 в 2011-2012 и 2017-м годах в диапазоне E_{c.m.} от 1.59 до 2.007 ГэВ
- 2. На основе выделенных событий изучить промежуточную динамику процесса и измерить его видимое сечение
- 3. Путем аппроксимации сечения процесса $e^+e^- \to \phi\eta$ определить параметры $\phi(1680)$
- 4. Вычислить вклад процесса $e^+e^- \to K^+K^-\eta$ в аномальный магнитный момент мюона

Целью второй части диссертационного исследования являлась разработка процедуры идентификации заряженных частиц с использованием LXe калориметра детектора КМД-3, для чего требовалось решить следующие **задачи**:

- 1. Предложить идею процедуры идентификации частицы на основе информации об её энерговыделении в слоях LXe калориметра
- 2. Разработать и применить процедуру калибровки полосковых каналов LXe калориметра с точностью ≲ 1%
- 3. Произвести настройку отклика полосковых каналов в моделировании
- 4. Осуществить сравнение спектров откликов классификаторов, используемых для идентификации частиц, в эксперименте и моделировании для всех типов частиц
- 5. Продемонстрировать применение разработанной процедуры идентификации для выделения событий эксклюзивных адронных процессов

- Измерено сечение процесса e⁺e⁻ → φη в диапазоне E_{c.m.} от 1,59 до 2,007 ГэВ со статистической точностью лучше, чем в предыдущих экспериментах. Аппроксимация измеренного сечения позволила определить параметры φ(1680) с лучшей к настоящему времени статистической точностью
- 2. Впервые была разработана процедура идентификации типа заряженной частицы с использованием информации с нескольких слоев многослойного ионизационного калориметра на основе жидкого ксенона

Теоретическая и практическая значимость исследования

- Улучшение точности измерения сечения процесса e⁺e⁻ → φη позволяет уточнить его вклад в аномальный магнитный момент мюона
- 2. Уточнение параметров $\phi(1680)$ обладает научной ценностью и само по себе, и с точки зрения использования этих параметров для описания промежуточной динамики и сечений других адронных процессов
- 3. Разработанная процедура идентификации типа частицы имеет большое значение для подавления фона при анализе ряда адронных процессов с КМД-3. Кроме того, продемонстрированная в данной работе принципиальная возможность идентификации адронов с ионизационным многослойным калориметром на основе жидкого ксенона стимулирует интерес к калориметрам подобного типа

Методология и методы исследования

Методологической основой диссертационного исследования являются экспериментальные методы исследования, включая методы статистической обработки данных и моделирования методом Монте-Карло, а также методы машинного обучения (бустированные деревья принятия решений, BDT), примененные к задаче идентификации частиц

Положения, выносимые на защиту

- На основе статистики, набранной детектором КМД-3 в 2011–2012 и 2017-м годах, наблюдается только один промежуточный механизм рождения конечного состояния K⁺K[−]η: e⁺e⁻→φη.
- Используемая в анализе статистика позволяет измерить сечение процесса e⁺e⁻→φη с лучшей, чем в предыдущих экспериментах, статистической точностью, и систематической неопределенностью 5,1%.
- Аппроксимация измеренного сечения e⁺e[−]→φη позволяет определить параметры φ'-мезона с лучшей, чем в предыдущих экспериментах, статистической точностью и сравнимой с предыдущими измерениями систематической погрешностью.
- Разработанная процедура калибровки полосковых каналов LXe-калориметра с точностью ≤ 1% вместе с настройкой откликов полосковых каналов в моделировании позволяет получить приемлемое согласие экспериментальных и смоделированных спектров откликов классификаторов BDT, используемых для идентификации типа заряженных частиц.
- Разработанная методика идентификации частиц с LXe-калориметром детектора КМД-3 эффективна в задачах идентификации e[±] и π/K-разделении при импульсах 650–900 МэВ.

Степень достоверности и апробация результатов

По теме диссертации опубликовано 6 работ, из них 2 в научных журналах из списка ВАК и 4 в трудах конференций. Все 6 публикаций проиндексированы в базе данных Scopus

Результаты работы, составляющие материал диссертации, докладывались и обсуждались на научных семинарах ИЯФ СО РАН, а также на конференциях:

- 1. 10th International Workshop on e^+e^- collisions from Phi to Psi (PHIPSI15, Hefei, China, 2015)
- 2. Instrumentation for Colliding Beam Physics (INSTR17, Novosibirsk, Russia, 2017)
- 3. 10th International Workshop on Ring Imaging Cherenkov Detectors (RICH 2018, Moscow, Russia, 2018)
- 4. The European Physical Society Conference on High Energy Physics (EPS-HEP 2019, Ghent, Belgium, 2019)

Объем и структура работы

Работа состоит из введения, двух глав и заключения. Первая глава посвящена изучению процесса $e^+e^- \rightarrow K^+K^-\eta$ с детектором КМД-3. Во второй главе рассказывается о разработанной автором процедуре идентификации заряженных частиц с использованием многослойного LXe-калориметра детектора КМД-3. Объем диссертации составляет 117 страниц с 99-ю рисунками и 5-ю таблицами. Список литературы содержит 61 наименование

Личный вклад соискателя

Личный вклад автора в получение научных результатов, лежащих в основе диссертации, является определяющим. Автором лично осуществлены все этапы изучения процесса $e^+e^- \rightarrow K^+K^-\eta$, включая создание Монте-Карло генераторов сигнального и ряда фоновых процессов, выделение сигнальных событий и определение эффективности их регистрации, измерение видимого сечения, вычисление радиационных поправок и аппроксимацию борновского сечения, оценку систематических погрешностей. Автором был предложен и реализован инклюзивный подход к изучению данного процесса, состоящий в рассмотрении η -мезона в качестве частицы отдачи. Далее, соискателем была предложена идея процедуры идентификации частиц с LXe-калориметром детектора КМД-3. Им лично был разработан пакет программного обеспечения, использующийся для калибровки полосковых каналов LXe-калориметра. Автором были определены коэффициенты прозрачности катодов LXe-калориметра и осуществлена настройка откликов полосковых каналов в моделировании минимально ионизирующих и ливнеобразующих частиц. Наконец, соискателем было продемонстрировано согласие спектров откликов классификаторов BDT, использующихся в процедуре идентификации, в эксперименте и моделировании для всех типов частиц. Вклад соискателя в опубликованные работы по теме диссертации является определяющим.

Публикации по теме диссертации (1)

1. Charged particle identification with the liquid xenon calorimeter of the CMD-3 detector / V. L. Ivanov, G. V. Fedotovich, R. R. Akhmetshin [et al.]. – Текст : электронный // Nuclear Instruments and Methods in Physics Research Section A. – 2021. – Vol. 1015. – Р. 165761. – URL: https://doi.org/10.1016/j.nima.2021.165761. – Дата публикации: 24.08.2021. [Scopus, 17 crp.]

2. Study of the process $e^+e^- \rightarrow K^+K^-\eta$ with the CMD-3 detector at the VEPP-2000 collider / V. L. Ivanov, G. V. Fedotovich, R. R. Akhmetshin [et al.]. – Текст : электронный // Physics Letters B. – 2019. – Vol. 798. – P. 134946. – URL: https://doi.org/10.1016/j.physletb.2019.134946. – Дата публикации: 18.09.2019. [Scopus, 10 crp.]

3. Ivanov, V. L. Measurement of hadronic cross sections at CMD-3 / V. L. Ivanov. – Текст : электронный // Proceedings of Science : Proceedings of European Physical Society Conference on High Energy Physics (Ghent, 10–17 July 2019). – Italy, 2020. – Vol. 364. – P. 510. – URL: https://doi.org/10.22323/1.364.0510. – Дата публикации: 13.10.2020. [Scopus, 7 crp.]

Публикации по теме диссертации (2)

4. Charged particle identification using the liquid Xenon calorimeter of the CMD-3 detector / V. L. Ivanov, G. V. Fedotovich, A. V. Anisenkov [et al.]. – Текст : электронный // Nuclear Instruments and Methods in Physics Research Section A : Proceedings of the 10th Workshop on Ring Imaging Cherenkov Detectors (Moscow, 29 July – 4 August 2018). – Netherlands, 2020. – Vol. 952. – P. 161971. – URL: https://doi.org/10.1016/j.nima.2019.03.026. – Дата публикации: 13.03.2019. [Scopus, 3 crp.]

5. Charged particle identification with the liquid Xenon calorimeter of the CMD-3 detector / V. L. Ivanov, G. V. Fedotovich, A. V. Anisenkov [et al.]. – Текст : электронный // Journal of Instrumentation : Proceedings of the International Conference on Instrumentation for Colliding Beam Physics (Novosibirsk, 27 February – 3 March 2017). – UK, 2017. – Vol. 12, nr 09. – P. C09005. – URL: https://doi.org/10.1088/1748-0221/12/09/C09005. – Дата публикации: 07.09.2017. [Scopus, 9 crp.]

6. Study of $e^+e^- \rightarrow K^+K^-\eta$ process with the CMD-3 detector at VEPP-2000 collider / **V. L. Ivanov**, A. N. Amirkhanov, A. V. Anisenkov [et al.]. – Текст : непосредственный // Journal of University of Science and Technology of China : Proceedings of the 10th International Workshop on e^+e^- Collisions from ϕ to ψ (Hefei, 23–26 September 2015). – Hefei, 2016. – Vol. 46. – P. 502–506. [Scopus, 5 crp.]

Степень разработанности темы исследования

Относительно степени разработанности темы второй части диссертации заметим, что идентификация частицы по характеру её энерговыделения в многослойном ионизационном калориметре осуществлялась ранее во многих экспериментах. Так, сэмплинг-калориметры на основе жидкого аргона были разработаны для детекторов H1 (коллайдер HERA) [20], DØ (коллайдер Tevatron) [21] и ATLAS (коллайдер LHC) [22]. В этих калориметрах информация о продольном и поперечном профиле энерговыделения частицы использовалась, главным образом, для e^{\pm}/π^{\pm} -разделения и идентификации адронных струй. Кроме того, информация с калориметра на основе жидкого криптона использовалась для $e^{\pm}/\mu^{\pm}/\pi^{\pm}$ -разделения в экспериментах NA48 [23] и NA62 [24] (ЦЕРН).

Во всех перечисленных экспериментах идентификация осуществлялась для частиц с характерными энергиями в десятки ГэВ. В силу этого мы можем утверждать, что разработанная нами процедура идентификации частиц является первым успешным опытом создания подобной процедуры для частиц с импульсами до 1 ГэВ и с использованием ксенона в качестве рабочего вещества калориметра.

Перспективы

Перспектива дальнейшего изучения процесса $e^+e^- \rightarrow K^+K^-\eta$ с детектором КМД-3 связана с увеличением доступной для анализа статистики примерно на порядок в ходе продолжающихся экспериментов на коллайдере ВЭПП-2000. Это позволит в существенно уменьшить статистические и систематические ошибки измерения сечения и измерения параметров ϕ' .

Развитие методики идентификации частиц с LXe калориметром детектора КМД-3 может заключаться в создании единой системы идентификации, использующей информацию с других подсистем детектора: дрейфовой камеры, CsI калориметра, мюонной системы. Помимо этого, в связи с разрабатываемым в настоящее время в ИЯФ СО РАН проектом детектора Супер Чарм-Тау Фабрики рекомендуется изучить возможность и целесообразность использования в последнем ионизационного калориметра на основе сжиженного благородного газа по типу LXe калориметра детектора КМД-3.

Пример: коллинеарные процессы ниже $\phi(1020)$

Пример: коллинеарные процессы ниже $\phi(1020)$

