Probing Dynamics of Fusion-Fission Process in Heavy to Very Heavy Nuclei

Indranil Mazumdar

Tata Institute of Fundamental Research, Mumbai

India-JINR Workshop on Elementary Particle and Nuclear Physics, and Condensed Matter Oct. 16 - 19, JINR, Dubna raison d'étre of the current program

Heavy-Ion Physics at low and medium energy in a nutshell

HI induced fusion brings in T & J and opens up new vistas.

It helps in probing real time response of the nuclear many-body system to external trigger

The universal goal 1) Nuclear structure and structural evolution with T, J

2) Reaction dynamics

Nasirov et al. (2013)

Nuclear Fission is an example of large scale mass transfer across a barrier in a dissipative medium. The transport problem gets even more difficult considering the fact that nucleus is a quantum mechanical object.

The Primary Motivation is Two-Fold:

- To understand the dynamics of the fusion and subsequent fission or survival against fission
- The quest towards formation of the SHE

Experimentally, this is achieved by measuring the

1) Fission fragments 2) Evaporation residues 3) particles and GDR gamma rays

The measured cross sections demand understanding the dynamical and statistical observables,

Nuclear Level Density, Nuclear Viscosity, Shell effects, entrance channel masses, Target – projectile deformations, Barrier heights etc. and their dependence upon

Temperature and angular momentum

Theoretical approaches:

Macroscopic (phenomenological)

Microscopic

Hybrid Recoil Analyzer (HYRA) at Inter University Accelerator Centre, Delhi Coupled with the TIFR 4π Sum-Spin Spectrometer

The European Physical Journal A volume 58, (2022)

- Phys Rev. C 88 024312 (2013)
- Phys Rev C 88 034606 (2013)
- Nucl. Phys. A 890, 62 (2012)
- Jour. Phys. G 41 (2014)
- EPJ Web of Sc.(2011,2013)
- Phys. Rev. C 95 (2017)
- Phys. Rev. C 96 (2017)
- Phys. Rev. C 99 (2019)
- Phys Rev C. 101, (2020)

Probing role of proton shell closure

Phys. Rev. C 88 (2013)

Phys. Rev. C 88 (2013)

Reaction	Ecm	E.	Fermi-function	free parameters
system	(MeV)	(MeV)	M_0	ΔM
	80.7	34.3	11	1.0
¹⁶ O + ²⁰⁸ Pb	86.5	40.1	11	1.0
	92.2	45.8	11	0.75
	97.9	51.5	12	0.25
	105.3	59.0	17	1.0
	113.8	67.3	16	1.0
	78.8	34.3	8	0.5
¹⁸ O + ²⁰⁶ Pb	84.5	40.0	9	0.25
	111.6	67.0	10	1.0

TABLE V. The fitted Fermi-function free parameters for $^{16}{\rm O}$ + $^{208}{\rm Pb}$ and $^{18}{\rm O}$ + $^{206}{\rm Pb}.$

Hosamani et al. Phys Rev. C 101, (2020)

Significantly larger ER survival for ¹⁹⁸Pb.

May be due to higher LDM Barrier and shell correction energy.

Possible role of NCN is also discussed

Spin Distributions from ⁴⁸Ti+¹⁵⁰Nd system

$^{32}S + ^{154}Sm \rightarrow ^{186}Pt$

- We have measured the cross sections of ER from ¹⁸⁶Pt Compound Nucleus above barrier for the first time at five beam energies.
- We have also measured for the first time the spin distributions at all the beam energies.

The Very Heavy System

 $^{32}S + ^{208}Pb \rightarrow ^{240}Cf$

²⁴⁰Cf, being very heavy is predominantly fissioning system. Till date, there exists no data for ER for this nucleus.

This is the first measurement of ER cross sections from this CN

Any excess cross section of ER over what is predicted by Statistical Model is likely to hint towards mechanisms, like viscosity hindering the fission process.

\sim			
	-	-	

E_{lab} (MeV)	E_{cm} (MeV)	\mathbf{E}_{CN}^{*} (MeV)	$\sigma_{ER} \pm \text{error (MB)}$
148.4	122.9	62.3	180 ± 43
154.8	128.2	67.6	260 ± 30
176.4	146.0	85.4	232 ± 54
181.3	150.1	89.5	249 ± 59
186.4	154.4	93.8	239 ± 58
191.5	158.6	98.0	223 ± 53

First Important Observation from the Data Analysis

P R S Gomes et al PRC 49 (1994) 245R. Sariyal et al Present work:K K Rajesh et al PRC 100 (2019) 044611

<u>Clear demonstration of role of entrance channel</u> <u>mass asymmetry</u>

Theoretical Analysis: <u>I Statistical Model Analysis</u>

Experimental Spin Distribution and Fusion Cross sections are Fed in the Calculations

• Fission Channel Calculation

Saddle point transition state model: Bohr & Wheeler, Phys. Rev. 56 426 (1939) The fission rate is determined by integrating over all available states at the saddle point

$$R_{\text{fiss}} = \frac{1}{2\pi\hbar\rho_1(E_i, J_i)} \int_0^{E_i - E_b} \rho_2(E_i - E_b - E, J_i) dE,$$

 $\Gamma_f^{\text{BW}} = \frac{T}{2\pi} \exp(-E_f/T).$ Vandenbosch & Huizenga (1974)

Note: we compute this exact integral and not any other simpler form

Analysis:

Stage I. No viscosity, No temperature dependent NLD parameter *a*

Stage II Includes viscosity & temperature dependent NLD *a* [Ignatyuk-Reisdorf & Ignatyuk-Reisdorf + Shlomo-Natowitz]

$$a(U) = \tilde{a}\left(1 + \frac{f(U)}{U}\delta W\right)$$
 where

 $f(U) = 1 - \exp(-U/E_D)$

$$(\delta W = M_{exp} - M_{LDM})$$

A.V. Ignatyuk et al., Yad. Fiz, 21, 485 (1975), [Soviet Journal of Nucl. Phys. 21, 255 (1975)]

 $\tilde{a} = 0.04543r_0^3 A + 0.1355r_0^2 A^{2/3}B_s + 0.1426r_0 A^{1/3}B_k$ W. Reisdorf, Z. Phys. A 300, 227 (1981)

 $a(T) = a(U)[1 - \kappa f(T)],$

 $f(T) = 1 - \exp[-(TA^{1/3}/21)^2]$

Shlomo and Natowicz, Phys. Rev C 44, 2878 (1991) Lestone, Phys. Rev C52 118 (1995)

Introducing Dissipative Mechanism

$$\Gamma_{\rm fiss}^{\rm BW} = \frac{1}{2 \pi \rho_1(E_i, J_i)} \int_0^{E_i - E_b} \rho_2(E_i - E_b - E_i, J_i) dE_i$$

Saddle point transition state model: Bohr & Wheeler, Phys. Rev. 56 426 (1939)

<u>H.A. Kramers, Physica, 4 284 (1940)</u>

$$\begin{split} &\Gamma_{f}^{\text{Kramers}} = \Gamma_{f}^{\text{BW}} [(1+\gamma^{2})^{1/2} - \gamma] & \gamma = \beta/2\omega_{0} \\ &\tau_{\text{ssc}} = \tau_{\text{ssc}}^{0} [(1+\gamma^{2})^{1/2} + \gamma] & \omega_{0} = 10^{21} \text{ s}^{-1} \\ &\tau_{\text{ssc}}^{0} = \frac{2}{\omega_{0}} R [(\Delta V/T)^{1/2}] \\ &R(z) = \int_{0}^{z} \exp(y^{2}) dy \int_{y}^{\infty} \exp(-x^{2}) dx. \end{split}$$

Additional buildup time

Grange, Jun-Qing, Weidenmuller (1983)

 $\tau_{\rm f} = \beta/2\omega_1^2[\ln(10B_{\rm f}/T)]$

Need for decoupling the effects of temperature and angular momentum

Separation of contributions from pre-saddle and saddle to scission regions

FIG. 2. The scaled rate $\lambda'_f(t')$ versus t' for various choices of a or, equivalently, E_f/T , as indicated.

FIG. 3. The probability $P_s(t')$ of finding the system to the left of the saddle point versus t' for various choices of a or, equivalently, of E_f/T , as indicated.

Weidenmuller and Jing-Shang (1984)

Strong temperature dependence demands two-body mechanism:

KTR Davies, AJ Sierk, JR Nix, Phys Rev C 13, (1976) 2385

Calculated shapes with time for different viscosity coefficient.

Two-body viscosity hinders the formation of the neck

Strong Temperature dependence

Little or no temperature dependence of viscosity parameter.

However, the authors admit, large mean free path can result in one-body viscosity, collision of nucleon with moving wall.

Favours neck formation

J. Blocki et al,

Annals of Physics, 113, 330 (1978)

ER from ${}^{32}S + {}^{154}Sm \rightarrow {}^{186}Pt$ system

Dynamical Calculations: The DNS Model

This system has been studied by several groups for Fission fragments, GDR y-rays,

- 1) M.B. Tsang *et al.*, Phys. Rev. C 28,747(1983)
- 2) B.B. Back et al., Phys. Rev C 32, 195(1985)
- 3) R. Butsch *et al.*, Phys. Rev. C 44, 1515(1991)
- 4) N.P. Shaw et al., Phys. Rev. C 61, 044612(2000)
- 5) W. Loveland *et al.*, Phys. Rev C 74, 044607 (2006)
- 6) D.J. Hinde *et al.*, Phys. Rev. C 75, 054603 (2007)
- 6) R. Yanez *et al.*, Phys. Rev. C 82, 054615 (2010)
- 8) J. Khuyagbaatar et al., Phys. Rev. C 86, 064602 (2012)
- 9) J. Khuyagbaatar et al., Phys. Rev C 91, 054608 (2015)
- 10) A.K. Nasirov et al., Eur. Phys. J A 55, 29 (2019)

Fission Fragment measurements

GDR gamma rays measurements

Dependence of fusion barrier energies on neutron rich projectiles

Entrance channel effect

Cup MWAC Cup Target

Fission Delay in ²⁴⁰Cf: ³²S + ²⁰⁸Pb

Phys. Rev C61, 044612 Phys. Rev. C61, 024613 Phys. Rev. C63, 047601 Phys. Rev. C63, 014611 Pramana 85, No.2 (2015)

 $\underline{\gamma_i} = 2; \ \underline{\gamma_o} = 10 \ fit \ all \ the \ spectra$

No apparent temperature dependence of γ It may be spin(deformation) dependent

With increasing T γ -yield is almost entirely from Saddle to scission

<u>*n*/s Ratio in Finite Nuclei at low temperature</u>

Auerbach & Shlomo PRL 103, 172501 (2009)
N. Dinh Dang, PRC 85, 064323 (2012)
Hung & Dang PRC86, 024302 (2012)

Extracted from GR widths

The HYRA Measurements at IUAC

Table 5.1	: Iotal ER C	ross-section o	aS +Pb at different e	energies.
$E_{lab}(MeV)$	$E_{cm}(MeV)$	$\mathbf{E}_{CN}^*(\mathrm{MeV})$	Hyra efficiency $(\epsilon_H)(\%)$	$\sigma_{ER}(\mu b)$
			1	448
			2	224
176.4	146.0	40.3	3	149
			4	112
			5	89
			1	334
181.3			2	167
	150.1	44.4	3	111
			4	84
			5	66
			1	155
186.4			2	77
	154.4	48.7	3	52
			4	39
			5	30
			1	151
191.5			2	75
	158.6	52.9	3	50
			4	37
			5	30

Figure 5.8: The efficiency of HYRA (ϵ_H) for ⁴⁸Ti and ^{16,18}O induced reaction as a function of mass number A at different lab energies.

Summary:

ER cross sections for ¹⁸⁶Pt measured at five new energies above barrier

Spin distributions measured for the first time for ¹⁸⁶Pt

Clear observation of QF when compared with 48Ti+138Ba system

Range of parameter spaces for barrier and viscosity determined

DNS calculations show role of inclusion of ICF

First measurements of ER of 240Cf

Future Plans

The wish list as inspired by the measurements so far:

<u>I Heavy Systems:</u> Spin and ER gated charged particle Spectra

II Very Heavy Systems:

Further measurements of ER cross sections from mass 240 and heavier systems

Collaborators:

R. Sariyal, D. Mehta,N. Madhavan, S. Nath, J. Gehlot , Gonika,S. M. Patel, P. B. Chavan,S. Panwar, V. Ranga,A. Parihari,

A. K. Nasirov, B. M. Kayumov Panjab University IUAC, New Delhi TIFR, Mumbai IIT-Roorkee Delhi University

BLTP, JINR, Dubna &

Acknowledgement

Pelletron-LINAC Accelerator Group, Inter University Accelerator Centre, New Delhi

Thank You