# Investigating a non-extensive QCD medium in extreme conditions 

Chowdhury Aminul Islam
University of Chinese Academy of Sciences

India-JINR Workshop

Dubna, Russia
October 17, 2023

## Outline

- Magnetic field in Heavy Ion Collisions and its impact on the QCD medium
- Effective model treatment, namely the NJL model
- Nonextensive statistics and its relevance
- Results
- Conclusion


## Production of a strong magnetic field in HICs

- A very strong magnetic field $\left(\approx m_{\pi}^{2}\right.$ at RHIC and $\approx 10 m_{\pi}^{2}$ at LHC ) is generated in the direction perpendicular to the reaction plane, due to the relative motion of the ions themselves. $\left(m_{\pi}^{2}=1.96 \times 10^{-2} \mathrm{GeV}^{2} \approx 10^{18}\right.$ Gauss)
- A comparison with other terrestrial strengths: Earth $\approx 10^{-18} m_{\pi}^{2}$, usual laboratory $\approx 10^{-13}$ $m_{\pi}^{2}$, max.
- A magnetar:
$\approx 10^{-} 5-10^{-} 3 m_{\pi}^{2}$.


## Phase diagram in presence of eB

- We observe magnetic catalysis (MC) and inverse magnetic catalysis (IMC) in presence of a magnetic field. [G. S. Bali et al., Phys. Rev. D 86, 071502]
- The PD in presence of $e B$ looks as: [G. S. Bali et al., JHep 02 (2012) 044]

- A word of caution about the IMC effect.


## NJL, a classic example of QCD model

- Nambu-Jona-Lasinio (NJL) model is one such candidate, which is often used as an effective QCD model. [Y. Nambu and G.
Jona-Lasinio, Phys. Rev. 122, 345 (1961); 124, 246(1961)]

$$
\begin{equation*}
\mathcal{L}_{\mathrm{NJL}}=\bar{\psi}(i \not \partial-m) \psi+\frac{G_{S}}{2}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right] \tag{1}
\end{equation*}
$$

- It mainly incorporates the chiral symmetry and the chiral condensate, breaks the chiral symmetry spontaneously. This symmetry is restored at high temperature.




## A 3 f NJL model in the prsence of a magnetic field

t We work with a 3-flavour NJL model:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{NJL}}^{B} & =\bar{\psi}\left(i \not D-m_{0}\right) \psi+\mathcal{L}_{1}+\mathcal{L}_{2}-\frac{1}{1} F^{\mu \nu} F_{\mu \nu} . \quad \text { with } \\
\mathcal{L}_{1} & =\frac{G_{S}}{2} \sum_{a=0}^{8}\left[\left(\bar{\psi} \lambda_{a} \psi\right)^{2}+\left(\bar{\psi} i \gamma_{5} \lambda_{a} \psi\right)^{2}\right] \text { and } \\
\mathcal{L}_{2} & =-G_{D}\left\{\operatorname{det}\left[\bar{\psi}\left(1+\gamma_{5}\right) \psi\right]+\operatorname{det}\left[\bar{\psi}\left(1-\gamma_{5}\right) \psi\right]\right\} .
\end{aligned}
$$

[D. P. Menezes et al, Phys. Rev. C 79, 035807 (2009)]
$t$ Because of the magnetic field there will be two important modifications:

$$
\begin{gathered}
E_{f}(B)=\left[M_{f}^{2}+p_{z}^{2}+(2 l+1-s)\left|q_{f}\right| B\right]^{1 / 2} \\
\int \frac{d^{3} p}{(2 \pi)^{3}} \rightarrow \frac{\left|q_{f}\right| B}{2 \pi} \sum_{l=0}^{\infty} \int_{-\infty}^{\infty} \frac{d p_{z}}{2 \pi}
\end{gathered}
$$

t To obatain the thermodynamic potential we need to linearise the Lagrangian.

## A $3 f$ NJL model in the prsence of a magnetic field

t We work with a 3-flavour NJL model:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{NJL}}^{B} & =\bar{\psi}\left(i \not D-m_{0}\right) \psi+\mathcal{L}_{1}+\mathcal{L}_{2}-\frac{1}{1} F^{\mu \nu} F_{\mu \nu} . \quad \text { with } \\
\mathcal{L}_{1} & =\frac{G_{S}}{2} \sum_{a=0}^{8}\left[\left(\bar{\psi} \lambda_{a} \psi\right)^{2}+\left(\bar{\psi} i \gamma_{5} \lambda_{a} \psi\right)^{2}\right] \text { and } \\
\mathcal{L}_{2} & =-G_{D}\left\{\operatorname{det}\left[\bar{\psi}\left(1+\gamma_{5}\right) \psi\right]+\operatorname{det}\left[\bar{\psi}\left(1-\gamma_{5}\right) \psi\right]\right\} .
\end{aligned}
$$

[D. P. Menezes et al, Phys. Rev. C 79, 035807 (2009)]
t To obatain the thermodynamic potential we need to linearise the Lagrangian.

$$
\begin{aligned}
& \Omega_{\mathrm{NJL}}^{B}(T, \mu)=G_{S} \sum_{f=u, d, s} \sigma_{f}^{2}-4 G_{D} \sigma_{u} \sigma_{d} \sigma_{s}+\sum_{f=u, d, s}\left(\Omega_{\mathrm{vac}}^{f}+\Omega_{\mathrm{mag}}^{f}+\Omega_{\mathrm{med}}^{f}\right)+\frac{B^{2}}{2} \\
& \Omega_{\mathrm{vac}}^{f}=-2 N_{c} \int_{\Lambda} \frac{d^{3} p}{(2 \pi)^{3}} E_{p}^{f} \\
& \Omega_{\mathrm{mag}}^{f}=-\frac{N_{c}}{2 \pi^{2}} \sum_{f}\left(\left|q_{f}\right| B\right)^{2}\left(\zeta^{\prime}\left(-1, x_{f}\right)+\frac{x_{f}^{2}}{4}-\frac{1}{2}\left(x_{f}^{2}-x_{f}\right) \ln x_{f}\right) \text { and } \\
& \Omega_{\mathrm{med}}^{f}=-\frac{N_{c}}{2 \pi} T \sum_{f, l, s}\left|q_{f}\right| B \int_{-\infty}^{\infty} \frac{d p_{z}}{(2 \pi)}\left[\ln \left(1+e^{-\left(E_{f}(B)-\mu\right) / T}\right)+\ln \left(1+e^{-\left(E_{f}(B)+\mu\right) / T}\right)\right]
\end{aligned}
$$

## Nonextensive statistics

t In 1988 Constantino Tsallis entertained the possibility of ensembles where the entropy took a nonadditive form involving a parameter q. [C. Tsallis, J. Stat. Phys. 52, 479 (1988)]
t As compared to the exponentials in traditional extensive statistics, the nonextensive statistics lead to power laws.
t It has been applied to many areas of the natural and social sciences.
[C. Tsallis, Introduction to Nonextensive Statistical Mechanics, Springer, 2008]
t In the analysis of the data, Tsallis distribution has gained prominence with very good fits to the transverse momentum distributions made both at RHIC and LHC.
[J. Cleymans \& D. Worku, EPJA 48, 160 (2012)]

## Nonextensive statistics

t Mathematically, the nonextensive statistics or the so-called Tsallis statistics can be obtained by replacing

$$
\begin{gathered}
\exp \left(-\frac{E}{T}\right) \rightarrow \exp _{q}\left(-\frac{E}{T}\right) \text { where } \\
\exp _{q}(x) \equiv \begin{cases}(1+(q-1) x)^{1 /(q-1)}, & \text { if } x>0 \\
(1+(1-q) x)^{1 /(1-q)}, & \text { if } x \leq 0\end{cases}
\end{gathered}
$$

t It reduces to the usual distribution in the limit $\mathrm{q} \rightarrow 1$.

$$
\begin{aligned}
\lim _{q \rightarrow 1} f_{T}^{B}(E) & =f^{B}(E), \\
\lim _{q \rightarrow 1} f_{T}^{F D}(E) & =f^{F D}(E), \\
\lim _{q \rightarrow 1} f_{T}^{B E}(E) & =f^{B E}(E) .
\end{aligned}
$$

t Derivation of the Tsallis distribution based on the Boltzmann equation can be found:
[T.S. Biró \& G. Purcsel, Phys. Rev. Lett. 95, 162302 (2005)]
t Typical values of q parameter is close to unity and should not deviate from 1 by more than 20 percentage in HICs. [ALICE Collaboration, Eur. Phys. J. C71 1655 (2011)]

## Results

## Condensates and effective masses $(\mathrm{e} B=0)$



# Chiral transition temperature ( $\mathrm{eB}=0$ ) 



Condensates


Consistent with [Roynek \& Wilk, JPG, 36125108 (2009)]

Chiral transition
temperature calculated from the inflection points


## Chiral condensates (eB¥0)


t In presence of a magnetic field up an down quarks split.
t The chiral condensates decrease with increasing q , particularly around the transition region.
t The effects on the effective masses are obvious.

## Chiral transition temperature ( $\mathrm{eB} \neq 0$ )



| $q$ | 1 | 1.05 | 1.10 | 1.15 |
| :---: | :---: | :---: | :---: | :---: |
| $T_{\mathrm{CO}}(\mathrm{MeV})$ | 181.5 | 176.5 | 171.5 | 167 |



## Chiral condensates comparison ( $\mathrm{eB} \neq 0$ )


t Magnetic field splits up an down quarks.
t Presence of magnetic catalysis for both cases.
t There is an overall decrease in the condensates in the nonextensive scenarios for most of the eB values.

## Chiral transition temperature comparison (eB $\neq 0$ )




| $e B\left(m_{\pi}^{2}\right)$ |  | 0 | 10 | 20 | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $T_{\mathrm{CO}}(\mathrm{MeV})$ | $q \rightarrow 1:$ | 173 | 181.5 | 200 | 220 |
|  | $q=1.1:$ | 162 | 171.5 | 191.5 | 212 |

Table: Chiral transition tempearture
t There is an enhancement in the scaled transition temperatures for the nonextensive scenarios.

t Chiral transition has been investigated for a nonextensive medium using NJL model.
t The transition temperature decreases with increasing $q$ values, i.e., the nonextensivity of the medium.
t This features remains unaltered in the presence of a magnetic field for a constant coupling.
t It will be interesting to investigate the chiral transition with running coupling constant: ongoing project.

# Thank You 

