Twist-3 TMD factorization using Gaussian ansatz in the LFQDM

Shubham Sharma

in collaboration with

Dr. Harleen Dahiya

Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, India

17 October, 2023

SS (NI	T.	I)
------	----	----	----

India-JINR Workshop, 2023

< □ > < 同 > < 回 > < 回 > < 回 >

D Introduction

- 2 Light-Front Quark-Diquark Model
- 3 Input Parameters
- 4 TMD Correlator and Parameterization
- D Result Analysis

SS (NITJ)

Introduction

- S. Sharma and H. Dahiya, arXiv:2310.03592 (2023)

SS (NITJ)

India-JINR Workshop, 2023

3/32

Introduction

2 Light-Front Quark-Diquark Model

3 Input Parameters

4 TMD Correlator and Parameterization

5 Result Analysis

5) Summary

Light-Front Quark-Diquark Model I

- In this model the proton is described as an aggregate of an active quark and a diquark spectator of definite mass.
- The proton has spin-flavor SU(4) structure and it has been expressed as a made up of isoscalar-scalar diquark singlet $|u S^0\rangle$, isoscalar-vector diquark $|u A^0\rangle$ and isovector-vector diquark $|d A^1\rangle$ states as [2, 3]

$$|P;\pm\rangle = C_S |u S^0\rangle^{\pm} + C_V |u A^0\rangle^{\pm} + C_{VV} |d A^1\rangle^{\pm}.$$

Here, the scalar and vector diquark has been denoted by S and A respectively. Their isospin has been represented by the superscripts on them.

• The light-cone convention $z^{\pm} = z^0 \pm z^3$ has been used.

Light-Front Quark-Diquark Model II

• The momentum of the proton (P), struck quark (p) and diquark (P_X) are

$$P \equiv \left(P^+, \frac{M^2}{P^+}, \mathbf{0}\right),$$

$$p \equiv \left(xP^+, \frac{p^2 + |\mathbf{p}_{\perp}|^2}{xP^+}, \mathbf{p}_{\perp}\right),$$

$$P_X \equiv \left((1-x)P^+, P_X^-, -\mathbf{p}_{\perp}\right).$$

• The Fock-state expansion in the case of two particle for $J^z = \pm 1/2$ for the scalar diquark can be expressed as

$$|u S\rangle^{\pm} = \int \frac{dx \, d^2 \mathbf{p}_{\perp}}{2(2\pi)^3 \sqrt{x(1-x)}} \bigg[\psi_{+}^{\pm(\nu)}(x, \mathbf{p}_{\perp}) \bigg| + \frac{1}{2} \, s; xP^+, \mathbf{p}_{\perp} \bigg\rangle + \psi_{-}^{\pm(\nu)}(x, \mathbf{p}_{\perp}) \bigg| - \frac{1}{2} \, s; xP^+, \mathbf{p}_{\perp} \bigg\rangle \bigg],$$

where, flavour index is v = u, d.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

6/32

Light-Front Quark-Diquark Model III

- |λ_q λ_S; xP⁺, **p**_⊥⟩ represents the state of two particle having helicity of struck quark as λ_q and helicity of a scalar diquark as λ_S.
- The LFWFs for the scalar diquark are expressed as [4]

$$\begin{split} \psi_{+}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= N_{S} \; \varphi_{1}^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{-}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= N_{S} \bigg(-\frac{p^{1}+ip^{2}}{xM} \bigg) \varphi_{2}^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{+}^{-(\nu)}(x,\mathbf{p}_{\perp}) &= N_{S} \bigg(\frac{p^{1}-ip^{2}}{xM} \bigg) \varphi_{2}^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{-}^{-(\nu)}(x,\mathbf{p}_{\perp}) &= N_{S} \; \varphi_{1}^{(\nu)}(x,\mathbf{p}_{\perp}). \end{split}$$

Here $\varphi_i^{(\nu)}(x, \mathbf{p}_{\perp})$ are LFWFs and N_S is the normalization constant.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Light-Front Quark-Diquark Model IV

• Similarly, Fock-state expansion in the case of two particle for the vector diquark is given as [5]

$$\begin{split} |\nu A\rangle^{\pm} &= \int \frac{dx \, d^2 \mathbf{p}_{\perp}}{2(2\pi)^3 \sqrt{x(1-x)}} \Big[\psi_{++}^{\pm(\nu)}(x,\mathbf{p}_{\perp}) \Big| + \frac{1}{2} + 1; xP^+, \mathbf{p}_{\perp} \Big\rangle \\ &+ \psi_{-+}^{\pm(\nu)}(x,\mathbf{p}_{\perp}) \Big| - \frac{1}{2} + 1; xP^+, \mathbf{p}_{\perp} \Big\rangle + \psi_{+0}^{\pm(\nu)}(x,\mathbf{p}_{\perp}) \Big| + \frac{1}{2} \; 0; xP^+, \mathbf{p}_{\perp} \Big\rangle \\ &+ \psi_{-0}^{\pm(\nu)}(x,\mathbf{p}_{\perp}) \Big| - \frac{1}{2} \; 0; xP^+, \mathbf{p}_{\perp} \Big\rangle + \psi_{+-}^{\pm(\nu)}(x,\mathbf{p}_{\perp}) \Big| + \frac{1}{2} \; - 1; xP^+, \mathbf{p}_{\perp} \Big\rangle \\ &+ \psi_{--}^{\pm(\nu)}(x,\mathbf{p}_{\perp}) \Big| - \frac{1}{2} \; - 1; xP^+, \mathbf{p}_{\perp} \Big\rangle \Big]. \end{split}$$

Here $|\lambda_q \ \lambda_D; xP^+, \mathbf{p}_{\perp}\rangle$ is the state of two-particle with helicity of quark being $\lambda_q = \pm \frac{1}{2}$ and helicity of vector diquark being $\lambda_D = \pm 1, 0$ (triplet).

Light-Front Quark-Diquark Model V

• The LFWFs for the vector diquark for the case when $J^z = +1/2$ are given as

$$\begin{split} \psi_{++}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= N_{1}^{(\nu)} \sqrt{\frac{2}{3}} \Big(\frac{p^{1} - ip^{2}}{xM} \Big) \varphi_{2}^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{-+}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= N_{1}^{(\nu)} \sqrt{\frac{2}{3}} \varphi_{1}^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{+0}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= -N_{0}^{(\nu)} \sqrt{\frac{1}{3}} \varphi_{1}^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{-0}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= N_{0}^{(\nu)} \sqrt{\frac{1}{3}} \Big(\frac{p^{1} + ip^{2}}{xM} \Big) \varphi_{2}^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{+-}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= 0, \\ \psi_{--}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= 0, \end{split}$$

Light-Front Quark-Diquark Model VI

• The LFWFs for the vector diquark for the case when $J^z = -1/2$ are given as

$$\begin{split} \psi_{++}^{-(\nu)}(x,\mathbf{p}_{\perp}) &= 0, \\ \psi_{-+}^{-(\nu)}(x,\mathbf{p}_{\perp}) &= 0, \\ \psi_{+0}^{-(\nu)}(x,\mathbf{p}_{\perp}) &= N_0^{(\nu)} \sqrt{\frac{1}{3}} \Big(\frac{p^1 - ip^2}{xM} \Big) \varphi_2^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{-0}^{-(\nu)}(x,\mathbf{p}_{\perp}) &= N_0^{(\nu)} \sqrt{\frac{1}{3}} \varphi_1^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{+-}^{-(\nu)}(x,\mathbf{p}_{\perp}) &= -N_1^{(\nu)} \sqrt{\frac{2}{3}} \varphi_1^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{--}^{-(\nu)}(x,\mathbf{p}_{\perp}) &= N_1^{(\nu)} \sqrt{\frac{2}{3}} \Big(\frac{p^1 + ip^2}{xM} \Big) \varphi_2^{(\nu)}(x,\mathbf{p}_{\perp}), \end{split}$$

where N_0 , N_1 are the normalization constants.

10/32

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

• Generic ansatz of LFWFs $\varphi_i^{(\nu)}(x, \mathbf{p}_{\perp})$ is being adopted from the soft-wall AdS/QCD prediction [6, 7] and the parameters a_i^{ν} , b_i^{ν} and δ^{ν} are established as [8]

$$\varphi_i^{(\nu)}(x, \mathbf{p}_\perp) = \frac{4\pi}{\kappa} \sqrt{\frac{\log(1/x)}{1-x}} x^{a_i^{\nu}} (1-x)^{b_i^{\nu}} \exp\left[-\delta^{\nu} \frac{\mathbf{p}_\perp^2}{2\kappa^2} \frac{\log(1/x)}{(1-x)^2}\right].$$

Introduction

- 2 Light-Front Quark-Diquark Model
- Input Parameters
 - 4 TMD Correlator and Parameterization
 - 5 Result Analysis

SS (NITJ)

Input Parameters I

• The parameters a_i^v and b_i^v , have been fitted at model scale $\mu_0 = 0.313$ GeV using the Dirac and Pauli data of form factors. [9, 10, 11].

ν	a_1^{ν}	b_1^{ν}	a_2^{ν}	b_2^{ν}	δ^{ν}
и	0.280	0.1716	0.84	0.2284	1.0
d	0.5850	0.7000	0.9434	0.64	1.0

Table 1: Values of model parameters corresponding to up and down quarks.

ν	N _S	N_0^{ν}	N_1^{ν}
и	2.0191	3.2050	0.9895
d	2.0191	5.9423	1.1616

Table 2: Values of normalization constants N_i^2 corresponding to both up and down quarks.

- The AdS/QCD scale parameter κ is chosen to be 0.4 GeV [12].
- Constituent quark mass (*m*) and the proton mass (*M*) are taken to be 0.055 GeV and 0.938 GeV sequentially.
- The coefficients C_i of scalar and vector diquarks are given as

$$C_S^2 = 1.3872,$$

 $C_V^2 = 0.6128,$
 $C_{VV}^2 = 1.$

1 Introduction

- 2 Light-Front Quark-Diquark Model
- 3 Input Parameters
- TMD Correlator and Parameterization
 - D Result Analysis

6 Summary

TMD Correlator

TMD Correlator

• The unintegrated quark-quark correlator in the light-front formalism for SIDIS is defined as [13]

$$\Phi_{[\Lambda^{N_i}\Lambda^{N_f}]}^{\nu[\Gamma]}(x,\mathbf{p}_{\perp};S) = \frac{1}{2} \int \frac{dz^- d^2 z_T}{2(2\pi)^3} e^{ip.z} \langle P; \Lambda^{N_f} | \overline{\psi}^{\nu}(0) \Gamma \mathcal{W}_{[0,z]} \psi^{\nu}(z) | P; \Lambda^{N_i} \rangle \bigg|_{z^+=0}$$

- $|P; \Lambda^{N_i}\rangle$ and $|P; \Lambda^{N_f}\rangle$ are the initial and final states of the proton having momentum *P* with helicities Λ^{N_i} and Λ^{N_f} , respectively.
- The momentum of the proton (P), struck quark (p) and diquark (P_X) are

$$P \equiv \left(P^+, \frac{M^2}{P^+}, \mathbf{0}\right),$$

$$p \equiv \left(xP^+, \frac{p^2 + |\mathbf{p}_{\perp}|^2}{xP^+}, \mathbf{p}_{\perp}\right),$$

$$P_X \equiv \left((1-x)P^+, P_X^-, -\mathbf{p}_{\perp}\right).$$

• The value of Wilson line $\mathcal{W}_{[0,z]}$ is chosen to be 1.

SS (NITJ)

TMD Parameterization for proton at twist-3

$$\begin{split} \Phi_{[\Lambda^{N_{i}}\Lambda^{N_{f}}]}^{[1]} &= \frac{1}{2P^{+}} \,\bar{u}(P,\Lambda^{N_{F}}) \left[e^{\nu} \left(x,\mathbf{p}_{\perp}^{2} \right) - \frac{i\sigma^{i^{+}}p_{T}^{i}}{P^{+}} e_{T}^{\perp\nu} \left(x,\mathbf{p}_{\perp}^{2} \right) \right] u(P,\Lambda^{N_{i}}) \\ \Phi_{[\Lambda^{N_{i}}\Lambda^{N_{f}}]}^{[\gamma_{S}]} &= \frac{1}{2P^{+}} \,\bar{u}(P,\Lambda^{N_{F}}) \left[-\frac{i\sigma^{i^{+}}\gamma_{5}k_{T}^{i}}{P^{+}} e_{T}^{\nu} \left(x,\mathbf{p}_{\perp}^{2} \right) - i\sigma^{+-}\gamma_{5}e_{L}^{\nu} \left(x,\mathbf{p}_{\perp}^{2} \right) \right] u(P,\Lambda^{N_{i}}), \\ \Phi_{[\Lambda^{N_{i}}\Lambda^{N_{f}}]}^{[\gamma_{J}]} &= \frac{1}{2P^{+}} \,\bar{u}(P,\Lambda^{N_{F}}) \left[\frac{p_{T}^{j}}{M} f^{\perp\nu} \left(x,\mathbf{p}_{\perp}^{2} \right) + \frac{M \,i\sigma^{j^{+}}}{P^{+}} f_{T}^{\perp'\nu} \left(x,\mathbf{p}_{\perp}^{2} \right) \right. \\ &\quad + \frac{p_{T}^{j} \,i\sigma^{k^{+}}p_{T}^{k}}{M P^{+}} f_{T}^{\perp\nu} \left(x,\mathbf{p}_{\perp}^{2} \right) + \frac{i\sigma^{ij}p_{T}^{i}}{M} f_{L}^{\perp\nu} \left(x,\mathbf{p}_{\perp}^{2} \right) \right] u(P,\Lambda^{N_{i}}), \\ \Phi_{[\Lambda^{N_{i}}\Lambda^{N_{f}}]}^{[\gamma^{j}\gamma_{S}]} &= \frac{1}{2P^{+}} \,\bar{u}(P,\Lambda^{N_{F}}) \left[+ \frac{i\varepsilon_{T}^{ij}p_{T}^{i}}{M} g^{\perp\nu} \left(x,\mathbf{p}_{\perp}^{2} \right) + \frac{M \,i\sigma^{j^{+}}\gamma_{5}}{P^{+}} g_{T}^{\prime\nu} \left(x,\mathbf{p}_{\perp}^{2} \right) \right. \\ &\quad + \frac{p_{T}^{j} \,i\sigma^{k^{+}}\gamma_{5}p_{T}^{k}}{M P^{+}} g_{T}^{\perp\nu} \left(x,\mathbf{p}_{\perp}^{2} \right) + \frac{p_{T}^{j} \,i\sigma^{+-}\gamma_{5}}{M} g_{L}^{\perp\nu} \left(x,\mathbf{p}_{\perp}^{2} \right) \right] u(P,\Lambda^{N_{i}}), \end{split}$$

SS (NITJ)

17 October, 2023

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Э

$$\begin{split} \Phi_{[\Lambda^{N_i}\Lambda^{N_f}]}^{[i\sigma^{ij}\gamma_5]} &= -\frac{i\varepsilon_T^{ij}}{2P^+} \,\bar{u}(P,\Lambda^{N_F}) \left[-\frac{h^{\nu}\left(x,\mathbf{p}_{\perp}^2\right)}{P^+} + \frac{i\sigma^{k+}p_T^k}{P^+} h_T^{\perp\nu}\left(x,\mathbf{p}_{\perp}^2\right) \right] u(P,\Lambda^{N_i}) \,, \\ \Phi_{[\Lambda^{N_i}\Lambda^{N_f}]}^{[i\sigma^{+-}\gamma_5]} &= \frac{1}{2P^+} \,\bar{u}(P,\Lambda^{N_F}) \left[+ \frac{i\sigma^{i+}\gamma_5 p_T^i}{P^+} h_T^{\nu}\left(x,\mathbf{p}_{\perp}^2\right) + i\sigma^{+-}\gamma_5 h_L^{\nu}\left(x,\mathbf{p}_{\perp}^2\right) \right] u(P,\Lambda^{N_i}) \,. \end{split}$$

18/32

▲□▶▲圖▶★園▶★園▶ ▲園▶ 三国

1 Introduction

- 2 Light-Front Quark-Diquark Model
- 3 Input Parameters
- 4 TMD Correlator and Parameterization

5 Result Analysis

6) Summary

SS (NITJ))
-----------	---

Explicit Expressions of TMDs

For proton, the twist-3 TMDs can be given as

$$\begin{split} xe^{\nu}(x,\mathbf{p}_{\perp}^{2}) &= \frac{1}{16\pi^{3}} \Big(C_{S}^{2} N_{s}^{2} + C_{A}^{2} \Big(\frac{2}{3} |N_{1}^{\nu}|^{2} + \frac{1}{3} |N_{0}^{\nu}|^{2} \Big) \Big) \frac{m}{M} \Big[|\varphi_{1}^{\nu}|^{2} + \frac{p_{\perp}^{2}}{x^{2} M^{2}} |\varphi_{2}^{\nu}|^{2} \Big], \\ xf^{\perp\nu}(x,\mathbf{p}_{\perp}^{2}) &= \frac{1}{16\pi^{3}} \Big(C_{S}^{2} N_{s}^{2} + C_{A}^{2} \Big(\frac{2}{3} |N_{1}^{\nu}|^{2} + \frac{1}{3} |N_{0}^{\nu}|^{2} \Big) \Big) \Big[|\varphi_{1}^{\nu}|^{2} + \frac{p_{\perp}^{2}}{x^{2} M^{2}} |\varphi_{2}^{\nu}|^{2} \Big], \\ xg_{L}^{\perp\nu}(x,\mathbf{p}_{\perp}^{2}) &= \frac{1}{32\pi^{3}} \Big(C_{S}^{2} N_{s}^{2} + C_{A}^{2} \Big(-\frac{2}{3} |N_{1}^{\nu}|^{2} + \frac{1}{3} |N_{0}^{\nu}|^{2} \Big) \Big) \Big[|\varphi_{1}^{\nu}|^{2} - \frac{p_{\perp}^{2}}{x^{2} M^{2}} |\varphi_{2}^{\nu}|^{2} \\ &- \frac{2m}{xM} |\varphi_{1}^{\nu}||\varphi_{2}^{\nu}| \Big], \\ xg_{T}^{\prime\nu}(x,\mathbf{p}_{\perp}^{2}) &= \frac{1}{16\pi^{3}} \Big(C_{S}^{2} N_{s}^{2} - \frac{1}{3} C_{A}^{2} |N_{0}^{\nu}|^{2} \Big) \frac{m}{M} \Big[|\varphi_{1}^{\nu}|^{2} + \frac{p_{\perp}^{2}}{x^{2} M^{2}} |\varphi_{2}^{\nu}|^{2} \Big], \\ xg_{T}^{\perp\nu}(x,\mathbf{p}_{\perp}^{2}) &= \frac{1}{8\pi^{3}} \Big(C_{S}^{2} N_{s}^{2} - \frac{1}{3} C_{A}^{2} |N_{0}^{\nu}|^{2} \Big) \Big[\frac{1}{x} |\varphi_{1}^{\nu}||\varphi_{2}^{\nu}| - \frac{m}{x^{2} M} |\varphi_{2}^{\nu}|^{2} \Big], \end{split}$$

S-Wave P-Wave D-Wave

SS (NITJ)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Э

Explicit Expressions of TMDs

$$\begin{split} xh_{L}^{\nu}(x,\mathbf{p}_{\perp}^{2}) &= \frac{1}{16\pi^{3}} \bigg(C_{S}^{2}N_{s}^{2} + C_{A}^{2} \bigg(-\frac{2}{3}|N_{1}^{\nu}|^{2} + \frac{1}{3}|N_{0}^{\nu}|^{2} \bigg) \bigg) \frac{1}{M} \bigg[m \bigg(|\varphi_{1}^{\nu}|^{2} - \frac{p_{\perp}^{2}}{x^{2}M^{2}} |\varphi_{2}^{\nu}|^{2} \\ &+ \frac{2p_{\perp}^{2}}{xM} |\varphi_{1}^{\nu}||\varphi_{2}^{\nu}| \bigg], \\ xh_{T}^{\nu}(x,\mathbf{p}_{\perp}^{2}) &= \frac{1}{8\pi^{3}} \bigg(-C_{S}^{2}N_{s}^{2} + \frac{1}{3}C_{A}^{2}|N_{0}^{\nu}|^{2} \bigg) \bigg[|\varphi_{1}^{\nu}|^{2} - \frac{p_{\perp}^{2}}{x^{2}M^{2}} |\varphi_{2}^{\nu}|^{2} - \frac{2m}{xM} |\varphi_{1}^{\nu}||\varphi_{2}^{\nu}| \bigg], \\ xh_{T}^{\perp}(x,\mathbf{p}_{\perp}^{2}) &= \frac{1}{8\pi^{3}} \bigg(-C_{S}^{2}N_{s}^{2} - \frac{1}{3}C_{A}^{2}|N_{0}^{\nu}|^{2} \bigg) \bigg[|\varphi_{1}^{\nu}|^{2} + \frac{p_{\perp}^{2}}{x^{2}M^{2}} |\varphi_{2}^{\nu}|^{2} \bigg]. \end{split}$$

- S. Sharma, N. Kumar and H. Dahiya, Nucl. Phys. B (2023)

Equation of Motion

$$xe^{q}(x, \mathbf{p}_{\perp}^{2}) = x\tilde{e}^{q}(x, \mathbf{p}_{\perp}^{2}) + \frac{m}{M}f_{1}^{q}(x, \mathbf{p}_{\perp}^{2}),$$

$$xf^{\perp q}(x, \mathbf{p}_{\perp}^{2}) = x\tilde{f}^{\perp q}(x, \mathbf{p}_{\perp}^{2}) + f_{1}^{q}(x, \mathbf{p}_{\perp}^{2}),$$

$$xg_{L}^{\perp q}(x, \mathbf{p}_{\perp}^{2}) = x\tilde{g}_{L}^{\perp q}(x, \mathbf{p}_{\perp}^{2}) + g_{1}^{q}(x, \mathbf{p}_{\perp}^{2}) + \frac{m}{M}h_{1L}^{\perp q}(x, \mathbf{p}_{\perp}^{2}),$$

$$xg_{T}^{\prime q}(x, \mathbf{p}_{\perp}^{2}) = x\tilde{g}_{T}^{\prime q}(x, \mathbf{p}_{\perp}^{2}) + g_{1}^{q}(x, \mathbf{p}_{\perp}^{2}) - \frac{m}{M}\frac{\vec{p}_{T}^{2}}{2M^{2}}h_{1T}^{\perp q}(x, \mathbf{p}_{\perp}^{2}),$$

$$xg_{T}^{\perp q}(x, \mathbf{p}_{\perp}^{2}) = x\tilde{g}_{T}^{\prime q}(x, \mathbf{p}_{\perp}^{2}) + g_{1T}^{\perp q}(x, \mathbf{p}_{\perp}^{2}) - \frac{m}{M}h_{1T}^{\perp q}(x, \mathbf{p}_{\perp}^{2}),$$

$$xh_{L}^{q}(x, \mathbf{p}_{\perp}^{2}) = x\tilde{h}_{L}^{q}(x, \mathbf{p}_{\perp}^{2}) - \frac{\vec{p}_{T}^{2}}{M^{2}}h_{1L}^{\perp q}(x, \mathbf{p}_{\perp}^{2}) + \frac{m}{M}g_{1}^{q}(x, \mathbf{p}_{\perp}^{2}),$$

$$xh_{T}^{q}(x, \mathbf{p}_{\perp}^{2}) = x\tilde{h}_{T}^{q}(x, \mathbf{p}_{\perp}^{2}) - h_{1}^{q}(x, \mathbf{p}_{\perp}^{2}) - \frac{\vec{p}_{T}^{2}}{2M^{2}}h_{1T}^{\perp q}(x, \mathbf{p}_{\perp}^{2}) + \frac{m}{M}g_{1T}^{\perp q}(x, \mathbf{p}_{\perp}^{2}),$$

$$xh_{T}^{\perp q}(x, \mathbf{p}_{\perp}^{2}) = x\tilde{h}_{T}^{\perp q}(x, \mathbf{p}_{\perp}^{2}) - h_{1}^{q}(x, \mathbf{p}_{\perp}^{2}) - \frac{\vec{p}_{T}^{2}}{2M^{2}}h_{1T}^{\perp q}(x, \mathbf{p}_{\perp}^{2}).$$

22/32

Gaussian Ansatz

• TMD from Guassian Ansatz, average transverse momentum and Gaussian transverse dependence ratio is defined as

$$\begin{split} \Upsilon^{\nu}_{Gauss}(x,\mathbf{p}_{\perp}^{2}) &= \frac{\Upsilon^{\nu}(x)}{\pi \langle \mathbf{p}_{\perp}^{2}(\Upsilon) \rangle^{\nu}} e^{\frac{-\mathbf{p}_{\perp}^{2}}{\langle \mathbf{p}_{\perp}^{2}(\Upsilon) \rangle^{\nu}}},\\ \langle \mathbf{p}_{\perp}^{r}(\Upsilon) \rangle^{\nu} &= \frac{\int dx \int d^{2} p_{\perp} p_{\perp}^{r} \Upsilon^{\nu}(x,\mathbf{p}_{\perp}^{2})}{\int dx \int d^{2} p_{\perp} \Upsilon^{\nu}(x,\mathbf{p}_{\perp}^{2})},\\ R_{G}(\Upsilon)^{\nu} &= \frac{2}{\sqrt{\pi}} \frac{\langle \mathbf{p}_{\perp}^{1}(\Upsilon) \rangle^{\nu}}{\langle \mathbf{p}_{\perp}^{2}(\Upsilon) \rangle^{\nu^{1/2}}}. \end{split}$$

	TMD Y	e^{u}	$f^{\perp u}$	h_L^u	$g_L^{\perp u}$	$g_T^{\perp u}$	$g_T^{\prime u}$	$h_T^{\perp u}$	h_T^u
	$\langle p_{\perp} \rangle^{u}$	0.22	0.22	0.28	0.28	0.20	0.22	0.22	0.28
•	$\langle p_{\perp}^2 \rangle^u$	0.06	0.06	0.09	0.09	0.05	0.06	0.06	0.09
	$R_G(\Upsilon)^{\nu}$	1.02	1.02	1.04	1.09	1.00	1.02	1.02	1.09

- S. Sharma, N. Kumar and H. Dahiya, Nucl. Phys. B (2023)

SS (NITJ)

TMD vs p_{\perp}^2 at x = 0.3

SS (NITJ)

India-JINR Workshop, 2023

17 October, 2023

TMD vs p_{\perp}^2 at x = 0.3

SS (NITJ)

India-JINR Workshop, 2023

17 October, 2023

1 Introduction

- 2 Light-Front Quark-Diquark Model
- 3 Input Parameters
- 4 TMD Correlator and Parameterization
- S Result Analysis

- For *u* quark the TMDs with Gaussian transverse dependence ratio R_G^{ν} less than 1.04 is successfully demonstrated by Gaussian factorization.
- There is no direct connection between the TMD associated waves being *S*, *P* and *D* with applicability of Gaussian Ansatz.
- No direct connection is found between the equation of motion being quadratic in transverse momenta and the validity of Gaussian Ansatz.
- This approach successfully describes a vast body of data at leading twist [8] and is useful for estimating the outcome of experimental measurements at higher twist.
- Factorization of collinear and transverse momentum dependence is certainly violated in full TMD evolution.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you!

SS	(NI)	TJ)

India-JINR Workshop, 2023

17 October, 2023

イロト イヨト イヨト ・

28/32

3

References I

- S. Sharma and H. Dahiya, arXiv: 2310.03592, HEP-PH (2023).
- R. Jakob, P. J. Mulders and J. Rodrigues, Nucl. Phys. A 626, 937 (1997).
- A. Bacchetta, F. Conti and M. Radici, Phys. Rev. D 78, 074010 (2008).
- G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980).
- J.R. Ellis, D.S. Hwang, and A. Kotzinian, Phys. Rev. D 80,074033 (2009).
- S. J. Brodsky and G. F. de Teramond, Phys. Rev. D 77, 056007 (2008).
- G. F. de Teramond and S. J. Brodsky, arXiv: 1203.4025, HEP-PH (2012).
- T. Maji and D. Chakrabarti, Phys. Rev. D 95, 074009 (2017).
- T. Maji and D. Chakrabarti, Phys. Rev. D 94, 094020 (2016).
- A. V. Efremov, P. Schweitzer, O. V. Teryaev and P. Zavada, Phys. Rev. D 80, 014021 (2009).

ヘロト ヘ戸ト ヘヨト ヘヨト

- M. Burkardt, arXiv: 0709.2966, HEP-PH (2008).
- D. Chakrabarti and C. Mondal, Phys. Rev. D 88, no. 7, 073006 (2013).
- S. Meissner, A. Metz and M. Schlegel, JHEP 08, 056 (2009).
 - S. Sharma, N. Kumar and H. Dahiya, Nucl. Phys. B 992, 116247 (2023).
 - S. Sharma and H. Dahiya, Int. J. Mod. Phys. A 37, 2250205 (2022).

SS (NITJ)

India-JINR Workshop, 2023

17 October, 2023

イロト イ理ト イヨト イヨト

臣

TMD vs x at
$$p_{\perp}^2 = 0.1$$

SS (NITJ)

India-JINR Workshop, 2023

17 October, 2023

イロト イ理ト イヨト イヨト

æ