

FOR NUCLEAR RESEARCH

Prospects for Dilepton Measurements in MPD Experiment at NICA

Sudhir Pandurang Rode* for the MPD collaboration

Joint Institute for Nuclear Research (JINR), Dubna

India-JINR Workshop - 2023

*sudhirrode11@gmail.com

October 16-19, 2023

Physics at NICA

- Smooth crossover at $\mu_{\rm B} \sim 0 \leftarrow$ Early universe like conditions.
- https://github.com/tgalatyuk/interaction_rate_facilities
- ≻ Explore high μ_B matter → Critical end point and 1st order phase transition.
- Similar net baryon density expected as in the core of neutron stars.
- > MPD and $\underline{BM@N} \rightarrow QCD$ matter study at these densities.
- > Ongoing (NA61/Shine, STAR-BES) and future (CBM) experiments in similar beam energy range.

3

NICA project

- ➤ The first megascience project in Russia → approaching its full commissioning:
 - already running in the fixed-target mode – <u>BM@N</u>
 - start of operation in collider mode
 in 2024-2025 MPD

Clean Room (Detector Electronics) SPD BM@N (Detector) (Detector) Extracted beam Collider MPD (Detector) E-cooling Internal taraet Heavy Ion Linac lon source Booster ----LU-20 Magnet factory Cryogenics Nuclotron

ollider parameters for 45 T·m, 11 GeV/u for Au ⁷⁹⁺				
Ring circumference (m)	503.4	Luminosity (cm ^{-2} s ^{-1})	1027	
Number of bunches	22	RMS bunch length (m)	0.6	
β (m)	0.35	Energy in CM (GeV)	4 - 11	
RMS Δρ/ρ (10 ⁻³)	1.6	IBS growth time (s)	1800	

MPD@NICA

- Expected beam configuration in Stage-I:
 - * not-optimal beam optics with wide z-vertex distribution, z ~ 50 cm
 - $^{\scriptscriptstyle >}~$ reduced luminosity (~10^{25}) $\rightarrow~$ collision rate ~ 50 Hz
 - [>] collision system available with the current sources: C (A=12), N (A=14), Ar (A=40), Fe (A=56), Kr (A=78-86), Xe (A=124-134), Bi (A=209) → start with Bi+Bi @ 9.2 GeV in 2025

Time Projection Chamber (TPC)

- 3D tracking + dE/dx measurement.
- > TPC assembling is ongoing.
- The achieved accuracy of the energy loss <dE/dx> is 6-7%.
- > Discrimination of charged pions from kaons up to momenta of ≈ 0.7 GeV/c and kaons from protons up to ≈ 1.1 GeV/c.

Time-Of-Flight (TOF)

- Based on the technology of (MRPC).
- Measures time-of-flight of the track.
- Assembling of TOF modules and gas system is ongoing.
- Designed Time and coordinate resolution of ≈80 ps and ≈0.5 cm, respectively.

- Better PID perfomance is achieved when combined with TPC.
- TOF matching efficiency: about 90% and it drops below 80% for track momenta below 250 MeV/c.
- > Correct identification of protons and $\pi^{+/-}(K)$ with 90% (80%) upto p \approx 2.5 (1.7) GeV/c.

Electromagnetic Calorimeteter (ECal)

2.2 2.4

E_v (GeV)

Au-Au@11 GeV

1 1.2 1.4 1.6 1.8

A shashlik type calorimeter made of Pb-scintillator sandwiches.

0.4 0.6 0.8

- Full configuration: 50 half-sectors in full azimuth (25 full sectors): Range, 360°/25 = 14.4°
- Measures deposited energy of the track and detect particles of energy from 10 MeV to a few GeV.
- Energy resolution is about 6% at 1 GeV.

δE/E

0.18

0.14 0.12 0.1 0.08 0.06 0.04 0.02

Dileptons: Motivation

- <u>Dileptons</u>: Penetrative probe of hot and dense nuclear matter.
 - Deconfinement
 - Chiral symmetry restoration
- <u>Advantages:</u>
 - ✤ Interacts electromagnetically
 - Large mean free path in contrasts to system size
 - Provide undistorted information at the time of their production.
- <u>Challenges:</u>
 - Overlapping signal → produce at different stages of the collision.
 - Inherit large combinatorial background from Dalitz as well as conversions in the detector material.

Hard scattering Bremsstrahlung

ring QGP phase ung QGP radiation

Hadron phase Resonance (p) decay

Freeze-out Long-lived particle (π, η) decay

i	Dilepton channels	
1	Dalitz decay of π^0 :	$\pi^0 o \gamma e^+ e^-$
2 3	Dalitz decay of η :	$\eta ightarrow \gamma l^+ l^-$
	Dalitz decay of ω :	$\omega \to \pi^0 l^+ l^-$
4	Dalitz decay of Δ :	$\Delta \to N l^+ l^-$
5	Direct decay of ω :	$\omega \to l^+ l^-$
$\frac{6}{7}$	Direct decay of ρ :	$\rho \to l^+ l^-$
	Direct decay of ϕ :	$\phi \rightarrow l^+ l^-$
8	Direct decay of J/Ψ :	$J/\Psi ightarrow l^+ l^-$
9	Direct decay of Ψ' :	$\Psi' ightarrow l^+ l^-$
10	Dalitz decay of η' :	$\eta' \to \gamma l^+ l^-$
11	pn bremsstrahlung:	$pn ightarrow pnl^+l^-$
12	$\pi^{\pm}N$ bremsstrahlung:	$\pi^{\pm}N \to \pi N l^+ l^-$

Dileptons: Motivation

- Thermal dileptons provide direct fingerprint of the QGP and HG matter.
- ✓ <u>Intermediate Mass Region</u>: Excitation function of the inverse-slope parameter, T_s (M = 1.5 − 2.5 GeV).
- ✓ Closely related to the initial temperature T_i of the fire ball: "<u>thermometer</u>" for the heavy-ion collisions.
- Low Mass Region: Sum of QGP and hadronic contributions proportional to fireball lifetime: "chronometer" for heavy-ion collisions

Detector performance: Particle Identification with MPD

- Jge **TPC After TOF** 0 10^{-1} Momentum (GeV/c) ŝ 1.8 1.6 **ECal** 1.4 1.2 0.8 F 0.6 F 0.4 0.2
- For PID, TPC (dEdx information), TOF (Time-Of-Flight) and ECal (E/p) is used.
- TPC+TOF is good enough to identify electrons with decent purity.
- ECal helps to gain even higher purity.

10³

10²

10

p_ (GeV/c)

Detector performance: Efficiency and Purity

Typical cuts on electrons:

- $|\eta| < 1.$
- > DCA < 3σ .
- $p_{\rm T} > 50 \; {\rm MeV/c}$
- > at least 39 hits in TPC
- > 2σ electron PID in TPC/TOF

- $\begin{array}{c} 1.1\\ 1\\ 0.9\\ 0.9\\ 0.8\\ 0.7\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.4\\ 0 & 0.2 & 0.4 & 0.6 & 0.8 & 1 & 1.2 & 1.4 & 1.6 & 1.8 \\ p_{T} (GeV/c) \end{array}$
- Single electron reconstruction efficiency: about 40% using TPC-TOF-ECal eID above 250 MeV/c.
- Purity of 70-90% at high $p_{\rm T}$ using TPC-TOF for eID and almost 100% using additional information from ECal.

Ongoing studies

- Optimization of track and eID selection cuts
- Special efforts are in progress to reduce the CB from gamma conversion and π^0 -η Dalitz decays.
 - Conversions: Distance of Closest Approach (DCA) selection
 - Dalitz decay pair candidates:
 - Divide acceptance into fiducial and veto area for better recognition of Dalitz pairs.
 - > No further pairing of reconstructed π^0 Dalitz/conversion pairs
- Use of Machine Learning tools to improve the overall electron identification efficiency to enhance the signal and subsequently, reject combinatorial background.
- Criteria:
 - \rightarrow larger statistical significance of signals \rightarrow smaller statistical uncertainties
 - bigher S/B ratio → smaller systematic uncertainties from background normalization
- Signals:
 - → Low Mass region \rightarrow 0.2-0.6 GeV/c²
 - LVM: φ, ρ, ω

Conversion pairs rejection

- Similarly, it is very effective in reducing contributions from conversion pairs in TPC vessels.
- Not so much at the beam pipe: source of combinatorials.

Combinatorial background Rejection

Bi-Bi@9.2 GeV

- Selection cuts:
 - → Fid. acc. $|\eta| < 0.3$
 - > DCA < 3σ
 - > At least 39 hits in TPC.
 - [>] 2σ electron PID in TPC/TOF

- Perform analysis in fiducial acceptance (say $|\eta| < 0.3$) and other is veto (0.3 < $\eta < 1.0$).
- With different analysis strategies, further rejection of combinatorials can be achieved.
- ▶ Better reconstruction of low p_T tracks allow significant reduction in CB → already reasonable improvement with tuned selection.
- Test reduced magnetic field (B = 0.2 T) sample.

Machine Learning

- Various Neural network options: e.g. Multi-Layer Perceptrons (MLP)
- Provide information about the correlation among the variables.
- Expect significant improvement in the electron identification efficiency.

- Electron reconstruction efficiency: about 40% using TPC-TOF-ECal eID above 250 MeV/c.
- Efficiency drops significantly as various track selection cuts are applied.

Current status: Combinatorial background Rejection

BiBi@9.2 GeV (UrQMD), 50 M events \rightarrow full event/detector simulation and reconstruction

- Optimization of selection cuts could lead to some improvements.
- Signal to Background ratio of 5-10% between 0.2 to 1.5 GeV/c² invariant mass region.
- Meaningful measurements at ~100M
 events → First observations possible at
 ~ 50 M events.
- Dedicated mass productions for dielectron analyses.
- Continuous dedicated efforts are being put to improve S/B ratio while preserving signal significance.

- MPD is under construction at NICA \rightarrow Commissioning and first data taking is expected in 2025 with <u>BiBi@9.2</u> GeV.
- Dielectrons are valuable probes and capable of delivering strong physics messages: Exciting dielectron program is anticipated at MPD using dedicated sub-detectors.
- Excellent PID and high purity can be achieved using ECal in addition to TPC+TOF.
- Good control over CB from conversions using DCA selection except at beam pipe.
- Ongoing efforts to reduce combinatorial background from Dalitz decays.
- Improvement in overall electron identification efficiency using Machine Learning tools.

Thank you

BACK-UP

Detector performance: Momentum resolution

Maximum achievable relative transverse momentum resolution for charged particles of 2% as function of $p_{\rm T}$ (0.2-0.8 GeV/c) and η (|η| < 1).

Detector performance: Purity

TPC and TOF PID is sufficient to get decent purity however, high pt and high invariant mass region is still contaminated.

Nevertheless, additional information from ECal helps removing the contamination.

MPD Subsystems

Forward Hadron Calorimeter (FHCal)

 $2 \leq |\eta| \leq 5$

- FHCal: Event centrality and reaction plane measurements with potential for event triggering.
- Two identical detectors, each with 44 modules placed approx. 3.2 m upstream and downstream from the center of the detector.
- The module transverse size of 15 x 15 cm².
- Modules and FEE boards are produced and tested.
- Relative calorimeter energy resolution, $\sigma_{\rm E}$ /E \approx 55%/ $\sqrt{\rm E}$ (GeV).

Fast Forward Detector (FFD)

- FFD: Provides fast triggering of A+A collisions and generates the start-time (T0) pulse generation for the ToF detector with a time resolution better than 50 ps.
- Consists of 20 Cherenkov modules based on Planacon multianode MCP-PMTs with each module consists of a 10 mm lead converter, a 15 mm quartz radiator.
- Almost 100% L0 trigger efficiency for central to mid-central collisions.