

Nuclotron based Ion Colider fAcility

Status of the MPD experiment at NICA

V. Riabov for the MPD Collaboration

MPD @ NICA

♦ One of two experiments at NICA collider to study heavy-ion collisions at $\sqrt{s_{NN}} = 4-11$ GeV

- Expected beam condition for the first year(s) :
 - ✓ not-optimal beam optics → wide z-vertex, $\sigma_z \sim 50$ cm
 - ✓ reduced luminosity (~10²⁵) → collision rate ~ 50 Hz
 - ✓ first beams: Bi+Bi / Xe+Xe at $\sqrt{s_{NN}} \le 7 \text{ GeV}$

Length	340 cm
Vessel outer radius	140 cm
Vessel inner radius	27 cm
Default magnetic field	0.5 T
Drift gas mixture	$90\% \text{ Ar} + 10\% \text{ CH}_4$
Maximum event rate	7 kHz ($L = 10^{27} \text{ cm}^{-2} \text{s}^{-1}$)

TPC: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.6$ **TOF, EMC**: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.4$ **FFD**: $|\Delta \phi| < 2\pi$, 2.9 < $|\eta| < 3.3$ **FHCAL**: $|\Delta \phi| < 2\pi$, 2 < $|\eta| < 5$

NICA Relativistic heavy-ion collisions

- At $\mu_B \sim 0$, smooth crossover (lattice QCD calculations + data)
- ↔ At large μ_B , 1st order phase transition is expected → QCD critical point
- MPD will study QCD medium at extreme net baryon densities
- ✤ Many ongoing (NA61/Shine, STAR-BES) and future experiments (CBM) in ~ same energy range

CA Running in the fixed-target mode

Fixed-target mode: one beam + thin wire (~ 100 μm) close to the edge of the MPD central barrel:

- ✓ extends energy range of MPD to $\sqrt{s_{NN}}$ = 2.4-3.5 GeV (overlap with HADES, BM@N and CBM)
- ✓ solves problem of low event rate at lower collision energies (only ~ 50 Hz at $\sqrt{s_{NN}}$ = 4 GeV at design luminosity)
- ✓ backup start-up solution (too low luminosity, only one beam, etc.)

NICA Detector performance in FXT mode

- Existing trigger system (FFD + FHCAL + TOF) remains to be efficient in the fixed-target mode
- MPD detector provides reasonable midrapidity coverage for identified hadrons
- ✤ Reconstruction efficiencies for TPC and TPC+TOF charged tracks at maximum beam energy:

Basic track selections: N_{hits} > 10; DCA-to-PV < 2 cm; primary particles

V. Riabov @ India-JINR Workshop - 2023

MPD strategy

- ✤ MPD strategy high-luminosity scans in <u>energy</u> and <u>system size</u> to measure a wide variety of signals:
 - \checkmark order of the phase transition and search for the QCD critical point \rightarrow structure of the QCD phase diagram
 - \checkmark hypernuclei and equation of state at high baryon densities \rightarrow inner structure of compact stars, star mergers
- ♦ Scans to be carried out using the <u>same apparatus</u> with all the advantages of collider experiments:
 ✓ maximum phase space, minimally biased acceptance, free of target parasitic effects
 ✓ correlated systematic effects for different systems and energies → simplified extraction of physical signals
- Continuously develop physical program based on the recent advancements in the field:
 ✓ identified particle spectra and ratios, collective flow and femtoscopy, production of strangeness and hypernuclei net-proton fluctuations, global polarization of hyperond and spin alignment of vector mesons, dilepton continuum and LVMs, etc.

Activities in the MPD Hall

Chimney

Top platform (cryogenics, power supplies, control system)

Novosibirsk BINP magnetic field mapper

Paramete

ngth of movement for R

all 3D sensor accuracy

Reading time per one measurement

ag of guide line leight of mappe

- . Aluminum (carbon fiber plastic) guiding rod
- End cap fixation
 Intermediate su
- Intermediate support
 Carbon fiber plastic carriage
- ✤ Yoke, TRIM coils, top platform, chimney assembled, ongoing tests of the refrigerators and control Dewar

Value

5 mm

1 sec

♦ Cooling to LN2 and LHe temperatures by the end of $2023 \rightarrow MF$ measurements \rightarrow central support frame

Carbon fiber support frame sagita ~ 5 mm at full load

NICA Electromagnetic calorimeter (ECAL)

- Sampling calorimeter with projective geometry (~70 tons):
 - \checkmark 25 sectors (50 half-sectors); 2400 modules; 38,400 "shashlyk"-type Pb-Sc towers with segmentation of 4x4 cm²
- ✤ 1600 modules (66%) have been produced (800 in Russia + 800 in China)
- ♦ Production of additional 400 modules in Russia is ongoing, use Russian-made WLS fibers \rightarrow 83% in total
- ✤ Mass production of half-sectors in JINR by international team, 18 half-sectors assembled

Half-sectors at different stages of assembly

ECAL installation in the MPD: August, 2024

Time-of-Flight (TOF)

- ✤ The production of MRPC detectors was completed in September 2022, (107%) chambers
- ♦ TOF modules are assembled \rightarrow long-term cosmic ray tests
- Electronics & cables, HV distribution modules, installation equipment in stock
- ♦ Assembly of the TOF gas system in the MPD hall \rightarrow spring, 2023

Storage of tested TOF modules

TOF installation bench in LHEP

✤ The equipment for installing the modules in the MPD is ready for use and stored in the laboratory

TOF installation in the MPD: September, 2024

NICA Time Projection Chamber (TPC)

- TPC cylinders, central membrane and service wheels are ready, final vessel assembly by the end of 2023
- Read-out chambers (ROCs) 24 tested chambers in stock + 4 tested spare chambers

- ✤ Gas system ready testing
- ✤ TPC FE electronics status:
 - ✓ 65% manufactured (967 pc)
 - ✓ no more problems with components → 100% available

- ✤ On critical path:
 - ✓ TPC rails prod./inst. October-November, 2023
 - ✓ TPC cooling system (INP BSU, Belarus): FEE cooling ready by Spring, 2024; thermostabilization panels by September, 2024;

TPC installation in the MPD: end of 2024

NICA Forward subsystems in production

FHCAL

FHCAL modules have been produced and tested \rightarrow installation in autumn 2023

 I.9° < |θ| < 7.3°</td>
 FFDw

 I.9° < |θ| < 7.3°</td>
 FFDw

 I.9° < |θ| < 4.1</td>
 IPw

 Au
 IPw

 Box with quartz radiator
 HV divider

 Pb converter
 8 MCP-PMT

 HV divider
 IPw

FEE board

Cherenkov modules of FFDE and FFDW are available, mechanics of FFD sub-detectors is available for installation in container with vacuum beam tube

detector left shoulder beam pipe L IP – Interaction Point L =300 cm L =300 cm

Beam and luminosity monitoring

- ✤ Two sets by 32 scintillator counters readout by SIMPs from both sides
- ✤ Observables & methods:
 - ✓ counting rate and z-vertex distribution ($\sigma_{z-vertex} \sim 5$ cm with $\delta \tau \sim 300$ ps)
 - ✓ Van der Meer and ΔZ scans for optimization of beam optics
- Beam tests of prototypes
- Mass production of scintillator detectors

FFD

Trigger simulation, BiBi@9.2 GeV

- Trigger system consists of FFD (2.7 < $|\eta|$ < 4.1), FHCAL (2 < $|\eta|$ < 5) and TOF ($|\eta|$ < 1.5)
- MPD trigger system challenges at NICA energies:
 - low multiplicity of particles produced in heavy-ion collisions
 - particles are not ultra-relativistic (even the spectator protons)

 \checkmark

 \checkmark

- ✤ DCM-QGSM-SMM, BiBi@9.2: trigger efficiency is 87-98% for different trigger configuration
- FFD trigger definition:
- \checkmark at least one fired module per side
- ✓ meaningful times, $0 < \text{time}_{E,W} < 50 \text{ ns}$
- ✓ reconstructed z-vertex, |z-vertex| < 140 cm
- FHCAL trigger efficiecny vs. z-vertex FFD trigger efficiency vs. z-vertex TOF trigger efficiency vs. z-vertex Trig.eff. Trig.eff. Trig.eff. 0.8 0.8 >=1 module per side 8 central (8c) >=1 detector 0.6 >=2 modules per side 0.6 24 central (24c) >=2 detectors 0.6 >=3 modules per side 44 central (44c) >=3 detectors =4 modules per side 8c || 24c || 44c >=4 detectors 0.4 0.4 0.4 at least one fired module at least two fired modules 0.2 0.2 0.2 0 50 -100-5050 100 -100-50100 100 z-vertex (cm) z-vertex (cm) z-vertex (cm

FHCAL trigger definition:

at least one fired module per side

meaningful times, $0 \le time_{EW} \le 50$ ns

reconstructed z-vertex, |z-vertex| < 150 cm

- Trigger system of the MPD based on FFD, FHCAL and TOF detectors provides high efficiency in HIC
- ✤ Light collision systems: ~ 50% for C+C, vanishingly small for d+d

TOF trigger definition:

at least one fired MRPC

Collaboration activity

- MPD publications: over 200 in total for hardware, software and physics studies (SPIRES)
- ✤ MPD @ conferences: presented at all major conferences in the field
- ✤ First collaboration paper recently published EPJA (~ 50 pages): Eur.Phys.J.A 58 (2022) 7, 140

Status and initial physics performance studies of the MPD experiment at NICA

MPD physics program

G. Feofilov, A. Aparin	V. Kolesnikov, Xia	nglei Zhu	K. Mikhailov, A. Taranenko			
 Global observables Total event multiplicity Total event energy Centrality determination Total cross-section measurement Event plane measurement at all rapidities Spectator measurement 	 Spectra of light hyper Light flavor spectra of light hyper Light flavor spectra of the hyperons and Total particle year to the hyperons and the hyperons and Total particle year to the hyperons of the hyperons	ght flavor and nuclei bectra hypernuclei yields and yield I chemical the event Phase Diag.	 Correlations and Fluctuations Collective flow for hadrons Vorticity, Λ polarization E-by-E fluctuation of multiplicity, momentum and conserved quantities Femtoscopy Forward-Backward corr. Jet-like correlations 			
D. Peresunko, Chi Yang		Wangmei Zha, A. Zinchenko				
Electromagnetic pr Electromagnetic calorimeter Photons in ECAL and central Low mass dilepton spectra in modification of resonances a intermediate mass region	robes meas. barrel n-medium and	 Heavy flavor Study of open charm production Charmonium with ECAL and central barrel Charmed meson through secondary vertices in ITS and HF electrons Explore production at charm threshold 				

Hot physics topics

- Critical fluctuations for (net)proton/kaon multiplicity distributions
- Solution the second s
- Spin alignment of vector mesons (K*(892), $\phi(1020)$)

Task for the MPD: extra points in the energy range 4-11 GeV with small uncertainties

NICA

Charged identified light hadrons

- Probe freeze-out conditions, collective expansion, hadronization mechanisms, strangeness production ("horn" for K/ π), parton energy loss, etc. with particles of different masses, quark contents/counts
- Charged hadrons: large and uniform acceptance + excellent PID capabilities of TPC and TOF

0-5% central AuAu@9 GeV (PHSD), 5 M events → full event/detector simulation and reconstruction

✓ sample ~ 70% of the $\pi/K/p$ production in the full phase space ✓ hadron spectra are measured from $p_T \sim 0.1$ GeV/c

Neutral identified light hadrons

Neutral mesons (π^0 , η, K_s, ω, η'): ECAL reconstruction + photon conversion method (PCM)

AuAu@11 GeV (UrQMD), 10M events \rightarrow full event/detector simulation and reconstruction

 \checkmark extend p_T ranges of charged particle measurements

✓ different systematics

MPD will be able to measure differential production spectra, integrated yields and $\langle p_T \rangle$, particle ratios, multiplicity distributions for a wide variety of identified hadrons (π , K, η , ω , p, η ')

First measurements will be possible with the first sampled data sets

Hyperon global polarization

- ♦ BiBi@9.2 GeV (PHSD), 15 M events \rightarrow full event/detector simulation and reconstruction
- ❖ Global hyperon polarization (thermodynamical Becattini approach [1]) by the event generator
 → reproduce at generator level basic features measured by STAR
 [1] F. Becattini, V. Chandra, L. Del Zand

Reconstruction of Λ global polarization, BiBi@9.2 GeV:

First global polarization measurements for $\Lambda/\overline{\Lambda}$ will be possible with ~ 10M data sampled events

V. Riabov @ India-JINR Workshop - 2023

NICA Polarization of vector mesons: $K^*(892)$ and ϕ

Non-central heavy-ion collisions:

 $\rho_{0,0}$ is a probability for vector meson to be in spin state = $0 \rightarrow \rho_{0,0} = 1/3$ corresponds to no spin alignment

- ★ Measurements at RHIC/LHC challenge theoretical understanding $\rightarrow \rho_{00}$ can depend on multiple physics mechanisms (vorticity, magnetic field, hadronization scenarios, lifetimes and masses of the particles ...)
- Measurements should be extended to lower collision energies

Hadronic phase

★ Resonances probe reaction dynamics and particle production mechanisms vs. system size and √s_{NN}:
 ✓ hadron chemistry and strangeness production, lifetime and properties of the hadronic phase, etc.

increasing lifetime								
	ρ(770)	K*(892)	Σ(1385)	Λ(1520)	Ξ(1530)	(1020)		
c τ (fm/c)	1.3	4.2	5.5	12.7	21.7	46.2		
σ _{rescatt}	$\sigma_{\pi}\sigma_{\pi}$	$\sigma_{\pi}\sigma_{K}$	$\sigma_\pi\sigma_\Lambda$	$\sigma_K \sigma_p$	$\sigma_{\pi}\sigma_{\Xi}$	$\sigma_K \sigma_K$		

- Final state yields of resonances depend on:
 - \checkmark resonance yields at chemical freeze-out
 - \checkmark lifetime of the resonance and the hadronic phase
 - \checkmark type and scattering cross sections of daughter particles

Resonance reconstruction

- ✤ BiBi@9.2 GeV (UrQMD) after mixed-event background subtraction, 10M events
- Examples of the low- p_T bins

- MPD is capable of reconstruction the resonance peaks in the invariant mass distributions using combined charged hadron identification in the TPC and TOF
- Weakly decaying daughters require additional second vertex and topology cuts for reconstruction

p_T spectra for resonances

• Full chain simulation and reconstruction, p_T ranges are limited by the possibility to extract signals, |y| < 1

- ✤ Reconstructed spectra match the generated ones within uncertainties
- First measurements for resonances will become possible with accumulation of ~ 10^7 Bi+Bi events
- ↔ Measurements are possible starting from ~ zero momentum \rightarrow sample most of the yields
- Measurements of $\Xi(1530)^0$ are very statistics hungry

Strangeness production: pp, p-A, A-A

- Since the mid 80s, strangeness enhancement is considered as a signature of the QGP formation
- Experimentally observed in heavy-ion collisions at AGS, SPS, RHIC and LHC energies

- Smooth evolution vs. multiplicity in pp, p-A and A-A collisions at LHC energies
- Strangeness enhancement increases with strangeness content and particle multiplicity
- STAR @ RHIC measurements in pp, A-A are in agreement with ALICE @ LHC at similar $\langle dN_{ch}/d\eta \rangle$

Origin of enhancement

- Origin of the strangeness enhancement in small/large systems is under debate:
 - \checkmark strangeness enhancement in QGP contradicts with the observed collision energy dependence
 - ✓ strangeness suppression in pp within canonical suppression models reproduces most of results except for $\phi(1020)$

V. Vislavicius, A. Kalweit, arXiv:1610.03001

✤ System size scan is important

NICA MPD performance for strange particles

BiBi@9.2 GeV (UrQMD), 10 M events

Phys.Scripta 96 (2021) 6, 064002

NICA p_T spectra for hyperons in centrality bins

- Capability to reconstruct baryon yields down to low momenta with reasonable efficiencies
- ✤ High-p_T reach is limited by statistics
- ♦ Reconstructed spectra are consistent with the generated ones \rightarrow validation of the procedure

MPD has capabilities to measure production of strange kaons, (multi)strange baryons and resonances in pp, p-A and A-A collisions using charged hadron identification in the TPC&TOF and different decay topology selections

Reconstruction of hypertritons

BiBi@9.2 GeV (PHQMD), 40 M events \rightarrow full event/detector simulation and reconstruction

★ First measurements for hypertriton will be possible with accumulation of ~ 50 M BiBi@9.2 events
 ★ Measurements for heavier ⁴_AH→⁴He+π⁻ and ⁴_AHe→³He+p+π⁻ would require ~ 150M events

V. Riabov @ India-JINR Workshop - 2023

0.02

-0.02

0.02

-0.02

0.02

-0.02

0.02

-0.02 0.02

-0.02

-0.5 0

0.5

models do not reproduce measurements

5

Beam energy dependence

Phys.Rev.Lett. 112 (2014) 16, 162301

39 GeV

27 GeV

9.6 Ge\

-0.5

- ↔ Generated during the nuclear passage time $(2R/\gamma)$ sensitive to EOS
- RHIC @ 200 GeV $(2R/\gamma) \sim 0.1 \text{ fm/c}$
- ★ AGS @ 3-4.5 GeV (2R/γ) ~ 9-5 fm/c
- ♦ v_1 and v_2 show strong centrality, energy and species dependence

- ✓ $\sqrt{s_{NN}}$ ~ 3-4.5 GeV, pure hadronic models reproduce v_2 (JAM, UrQMD) → degrees of freedom are the interacting baryons
- ✓ $\sqrt{s_{NN}} \ge 7.7$ GeV, need hybrid models with QGP phase (vHLLE+UrQMD, AMPT with string melting,...)

System size scan for flow measurements is vital for understanding of the medium transport properties and onset of the phase transition \rightarrow <u>unique capability of the MPD</u> in the NICA energy range

V. Riabov @ India-JINR Workshop - 2023

MPD performance for v_1 , v_2 of $\pi/K/p$

✤ UrQMD, BiBi@9.2 GeV

• Reconstructed and generated v_1 and v_2 for identified hadrons are in good agreement for all methods

NICA Collective flow for V0 (K_s^0 and Λ)

AuAu@11 GeV (UrQMD), 25 M events \rightarrow full event/detector simulation and reconstruction

- ✤ Differential flow signal extraction using invariant mass fit method
- Reasonable agreement between reconstructed and generated v_n signals for K_s^0 and Λ
- Similar measurements for weakly decaying hyperons and short-lived resonances

MPD has capabilities to measure different flow harmonics for a wide variety of identified hadrons in pp, p-A and A-A collisions

Multi-Purpose Detector (MPD) Collaboration

MPD International Collaboration was established in **2018** to construct, commission and operate the detector

11 Countries, >500 participants, 35 Institutes and JINR

Organization

Acting Spokesperson: Deputy Spokespersons: Institutional Board Chair: Project Manager: Victor Riabov Zebo Tang, Arkadiy Taranenko Alejandro Ayala Slava Golovatyuk

Joint Institute for Nuclear Research;

A.Alikhanyan National Lab of Armenia, Yerevan, Armenia; University of Plovdiv, Bulgaria; Tsinghua University, Beijing, China: University of Science and Technology of China, Hefei, China; Huzhou University, Huzhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China; University of Chinese Academy of Sciences, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Tbilisi State University, Tbilisi, Georgia; Institute of Physics and Technology, Almaty, Kazakhstan; Benemérita Universidad Autónoma de Puebla, Mexico: Centro de Investigación y de Estudios Avanzados, Mexico; Instituto de Ciencias Nucleares, UNAM, Mexico; Universidad Autónoma de Sinaloa, Mexico: Universidad de Colima, Mexico; Universidad de Sonora, Mexico: Institute of Applied Physics, Chisinev, Moldova; Institute of Physics and Technology, Mongolia;

Belgorod National Research University, **Russia**; Institute for Nuclear Research of the RAS, Moscow, **Russia**; National Research Nuclear University MEPhI , Moscow, **Russia**; Moscow Institute of Science and Technology, **Russia**; North Osetian State University, **Russia**; National Research Center "Kurchatov Institute", **Russia**; Peter the Great St. Petersburg Polytechnic University Saint Petersburg, **Russia**; Plekhanov Russian University of Economics, Moscow, **Russia**; St.Petersburg State University, **Russia**; Skobeltsyn Institute of Nuclear Physics, Moscow, **Russia**; Vinča Institute of Nuclear Sciences, **Serbia**; Pavol Jozef Šafárik University, Košice, **Slovakia**

Summary

- MPD construction and preparations for data taking are ongoing
- MPD commissioning and first data taking in 2025
- MPD has a solid physics program and can potentially provide unique results on the structure of the QCD phase diagram, provide insight into inner structure of compact start and neutron star mergers
- Develop realistic analysis techniques and tools using simulated data samples

Annual workshops on physics performance studies at NICA

Workshop on physics performance studies at NICA (NICA-2022)

13-15 December 2022 Virtual via ZOOM, Moscow time Europe/Moscow timezone

Overview

Timetable

Participant List

Registration

Registration Form

Group Photo

Previous workshops

Proceedings

3rd workshop on "Physics performance studies at FAIR and NICA" 29 November-1 December 2021 http://indico.oris.mephi.ru/event/221/

2nd workshop on "Physics performance studies at FAIR and NICA" 8-10 December 2020 http://indico.oris.mephi.ru/event/209/

1st workshop on "Physics performance studies at FAIR and NICA" 24-28 August 2020 http://indico.oris.mephi.ru/event/181/

Next workshop in December, 2023 – stay tuned for announcement

BACKUP

A Milestones for accelerator complex

Stages of the accelerator complex commissioning

- ✓ HILAC + transfer line to Booster → commissioned in 2018 with He¹⁺, Fe¹⁴⁺, C⁴⁺, Ar¹⁴⁺ and Xe²⁸⁺
- ✓ HILAC + Booster → first run in November-December, 2020 with He¹⁺
- ✓ HILAC + Booster + transfer line to Nuclotron → second run in October, 2021 with He¹⁺ and Fe¹⁶⁺
- ✓ HILAC + Booster + Nuclotron + transfer line to BM@N → third run in Jan. Apr., 2022 with C⁶⁺
- ✓ HILAC + Booster + Nuclotron + transfer line to BM@N -> fourth run in September, 2022 February, 2023 with Ar and Xe beams → 500+ M events at BM@N

Accelerator, next steps

Nuclotron-NICA transfer line

NICA collider

- ✤ Magnet and RF installation: by the middle of 2024
- First technological and cryogenic run of collider: end of 2024 beginning of 2025
- ✤ Fast extraction system from the Nuclotron: June of 2024
- Nuclotron-collider transfer line: Autumn of 2024
- ✤ First run with beams: 2025

MPD setup and overall performance

MPD at Stage'1:

- TPC tracking: |η|<1.6 (Npoints>15)
- **TOF & ECAL** coverage: |η|<1.3
- PID: TOF+dE/dx combined |η|<1.3, pT<3 GeV/c, limited PID 1.3<|η|<1.6 (dE/dx)

TPC: $|\Delta \phi| < 2\pi, |\eta| \le 1.6$ **TOF, EMC**: $|\Delta \phi| < 2\pi, |\eta| \le 1.4$ **FFD**: $|\Delta \phi| < 2\pi, 2.9 < |\eta| < 3.3$ **FHCAL**: $|\Delta \phi| < 2\pi, 2 < |\eta| < 5$

+ forward spectrometers

Au+Au @ 11 GeV (UrQMD + full chain reconstruction)

MPD mass productions

- ✤ Physics feasibility studies using centralized large-scale MC productions → consistent picture of the MPD physics capabilities with the first data sets, preparation for real data analyses
- https://mpdforum.jinr.ru/c/mcprod/26:

Request 25: General-purpose, 50M UrQMD BiBi@9.2 → DONE Request 26: General-purpose (trigger), 1M DCM-QGSM-SMM BiBi@9.2 → DONE Request 27: General-purpose (trigger), 1M PHQMD BiBi@9.2 → DONE Request 28: General-purpose with reduced magnetic field, 10M UrQMD BiBi@9.2 → DONE Request 29: General-purpose (hypernuclei), 20M PHQMD BiBi@9.2 → DONE Request 30: General-purpose (polarization), 15M PHSD BiBi@9.2 → DONE Request 31: General-purpose (femtoscopy), 50 M UrQMD BiBi@9.2 with freeze-out → Running Request 32: General purpose (flow), 15M vHLLE+UrQMD with XPT → DONE Request 33: General purpose (FXT), (11M x 3 energies) UrQMD (mean field) → DONE

- Production comparable in size to the first expected real data samples test the existing computing and software infrastructure
- Develop realistic analysis methods and techniques, set priorities and find group leaders

Handling the big data sets

- Centralized Analysis Framework for access and analysis of data \rightarrow Analysis Train:
 - \checkmark consistent approaches and results across collaboration, easier storage and sharing of codes and methods
 - \checkmark reduced number of input/output operations for disks and databases, easier data storage on tapes
- Analysis manager reads event into memory and calls wagons one-by-one to modify and/or analyze data:

- The Analysis manager and the first Wagons have been created, in MpdRoot @ mpdroot/physics
- Eventually all analysis codes will be committed to MpdRoot as Wagons
- ★ The Train runs to process centralized mass productions
 → 50M events are processed in 7-8 hours with ~ 15 wagons (1 year of CPU time)

Anisotropic flow at RHIC/LHC

• Initial eccentricity and its fluctuations drive momentum anisotropy v_n with specific viscous modulation

Evidence for a dense perfect liquid found at RHIC/LHC (M. Roirdan et al., Scientific American, 2006)

System size scan (A-A) is an important part of systematic study (initial geometry \rightarrow flow harmonics)

Small system scan at RHIC

Nature Phys. 15 (2019) 3, 214-220

p-Au, d-Au and ³He-Au @ 200 GeV by PHENIX

- Measurements demonstrate that the v_n 's are correlated to the initial geometry
- Hydrodynamical models, which include the formation of short-lived QGP droplets, provide a simultaneous description of these measurements

Event plane Resolution in vHLLE+UrQMD Bi+Bi $\sqrt{s_{NN}} = 9.2 \text{ GeV}$

2 sub event: $\Delta \eta = 0.1$

$$Res\{\Psi_n^{E(W)}\}=\sqrt{ig\langle \cos\left[n(\Psi_n^E-\Psi_n^W)
ight]ig
angle}$$

Anisotropic flow is measured as follows:

$$v_n = rac{\langle \cos[n(\phi - \Psi_n^{EP})]
angle}{\sqrt{\langle \cos\left[n(\Psi_{n,a} - \Psi_{n,b})
ight]
angle}}$$

Mass production 32 was used

- We do not measure the Ψ_3 resolution after to 60% centrality
- Ψ_3 resolution are smaller than Ψ_2
- Good agreement between $R_{MC}(\Psi_n)$ and $R_{reco}(\Psi_n)$ ¹³

Resolution from FFD is considerably smaller than from FHCal Flow results using FFD and FHCal are consistent

Elliptic flow measurements using TPC: Scalar product, Event-plane

$$u_{2} = \cos 2\phi + i \sin 2\phi = e^{2i\phi}$$
$$Q_{2} = \sum_{j=1}^{M} \omega_{j} u_{2,j}, \ \Psi_{2,\text{TPC}} = \frac{1}{2} \tan^{-1} \left(\frac{Q_{2,y}}{Q_{2,x}}\right)$$

- Scalar product: $v_2^{\text{SP}}\{Q_{2,\text{TPC}}\} = \frac{\langle u_{2,\eta\pm}Q_{2,\eta\mp}^* \rangle}{\sqrt{\langle Q_{2,\eta+}Q_{2,\eta-} \rangle}}$
- TPC Event-plane:

$$v_2^{\rm EP}\{\Psi_{2,\rm TPC}\} = \frac{\langle \cos\left[2(\phi_{\eta\pm} - \Psi_{2,\eta\mp})\right]\rangle}{R_2^{\rm EP}\{\Psi_{2,\rm TPC}\}}$$

$$R_2^{EP} \left\{ \Psi_{2,TPC} \right\} = \sqrt{\left\langle \cos \left[2(\Psi_{2,\eta+} - \Psi_{2,\eta-}) \right] \right\rangle}$$

Vinh Ba Luong, MPD Physics Forum March 31, 2021

RHIC BES program

♦ Data taking by STAR at RHIC: $3 < \sqrt{s_{NN}} < 200 \text{ GeV} (750 < \mu_B < 25 \text{ MeV})$

Au+Au Collisions at RHIC											
Collider Runs						Fixed-Target Runs					
	√ <mark>S_{NN}</mark> (GeV)	#Events	μ_B	Ybeam	run		√ S_{NN} (GeV)	#Events	μ_B	Y _{beam}	run
1	200	380 M	25 MeV	5.3	Run-10, 19	81	13.7 (100)	50 M	280 MeV	-2.69	Run-21
2	62.4	46 M	75 MeV	9. 18	Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21
3	54.4	1200 M	85 MeV	10	Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20
5	27	585 M	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20
6	19.6	595 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20
7	17.3	256 M	230 MeV	9 3	Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20
8	14.6	340 M	262 MeV	55	Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	-1.52	Run-20
9	11.5	157 M	316 MeV		Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20
10	9.2	160 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20
11	7.7	104 M	420 MeV	ξ η	Run-21	н	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19
				2		12	3.0 (3.85)	2000 M	750 MeV	-1.05	Run-18, 21

- A very impressive and successful program with many collected datasets, already available and expected results
- ✤ Limitations:
 - ✓ Au+Au collisions only
 - ✓ Among the fixed-target runs, only the 3 GeV data have full midrapidity coverage for protons (|y| ≤ 0.5), which is crucial for physics observables

Efficiency for $\pi/K/p$, $E_{lab} = 5.5 \cdot A \text{ GeV}$

Efficiency for $K_s^0/\Lambda/\Xi^-$, $E_{lab} = 5.5 \cdot A \text{ GeV}$

• $N_{hits} > 10$; $p_T > 0.1$ GeV/c; Primary particles ($R_{production} < 1$ cm)

Efficiency for $K^*(892)^0/\phi(1020)/\Sigma(1385)^{\pm}$, $E_{lab} = 5.5 \cdot A \text{ GeV}$

• $N_{hits} > 10; p_T > 0.1 \text{ GeV/c}; \text{Primary particles } (R_{production} < 1 \text{ cm})$

MPD should be able light and heavy identified hadrons at midrapidity

MPD-FXT, $v_1 \& v_2$ for protons/pions

Request 33 mass production (UrQMD mean-field, fixed-target mode)

Reconstructed $v_1 \& v_2$ are qualitatively consistent with truly generated signals at $|y_{cms}| < 0.5$ Efficiency corrections and larger statistics are needed for numerical conclusions

Comparison to higher energies

• $R\gamma \sim 1.05$ -1.2 in heavy-ion collisions at SPS/RHIC/LHC, $\sqrt{s_{NN}} = 17.2$ -2760 GeV

• $R\gamma \sim 1.05$ is on the verge of experimental measurability (PHENIX in pp/pA@200, $\geq 2\sigma$)

Finite-Size Effects and search for CEP

In HIC, both the size (L) and duration of formed system are finite. **Critical behavior changes with L**

If the L is too small, the correlation length $\boldsymbol{\xi}$ can not be fully developed to cause a phase transition.

if the correlation length $\xi \sim |T - T_c|^{-\nu} \leq L$ the finite-size effect is not negligible and only a **pseudo-critical point**, **shifted from the genuine CEP**, is **observed**.

- ✓ Finite-size effects have a specific dependencies on size (L)
- ✓ The scaling of these dependencies give access to the CEP's location, it's critical exponents and scaling function.

Note change in peak heights positions & widths with L

High energy heavy ion reaction data

- NICA can deliver different ion beam species and energies: *
 - Targets of interest (C = astronaut, Si = electronics, Al = spacecraft) + He, C, O, Si, Fe, etc. \checkmark
- \therefore No data exist for projectile energies > 3 GeV/n

 m^2 vs. momentum in TOF m² (GeV² / c⁴) 0.5 -0.5^{L}_{0} 0.52.51.5p/q (GeV/c)

He

1.5

2

m² (GeV² / c⁴)

0.5

MPD has excellent light fragment identification capabilities in a wide rapidity range \rightarrow <u>unique</u> capability of the MPD in the NICA energy range

p/q (GeV/c)

53

Direct photons

Direct photons – photons not from hadronic decays. Produced throughout the system evolution (thermal + prompt) : Prompt direct \checkmark penetrating probe photons \checkmark low-E - most direct estimation of the effective system temperature ✓ high-E - hard scattering probe Thermal direct photons Estimation of the direct photon yields @NICA empirical model calculations scaling

Physics of Particles and Nuclei, 2021, Vol. 52, No. 4, pp. 681–685

- UrQMD v3.4 with hybrid model (3+1D hydro, bag model EoS, hadronic rescattering and resonances within UrQMD)
- each cell have Ti, Ei, µbi:

*

*

- T is high QGP phase (Peter Arnold, Guy D. Moore, Laurence G. Yaffe, JHEP 0112:009 2001)
- T is low HG phase (Simon Turbide, Ralf Rapp, Charles Gale, Phys.Rev.C69:014903,2004)
- T is intermediate mixed phase
- integrate over all cells and all time steps
- calculations reproduce hydro calculations for the SPS \checkmark

$$R_{\gamma} = rac{\gamma_{
m inc}}{\gamma_{
m decay}} = rac{\gamma_{
m inc}/\pi^0}{\gamma_{
m decay}/\pi^0_{
m param}} \qquad \gamma_{
m direct} = -\left(1 - rac{1}{R_{\gamma}}\right) \cdot \gamma_{
m inc}$$

Non-zero direct photon yields are predicted with $R\gamma \sim 1.05 - 1.15$ and $v_2 \sim 0.5\%$ at top NICA energy **

V. Riabov @ 2nd workshop on Dynamics of QCD matter

Decay

photons

Prospects for the MPD

✤ Photons can be measured in the ECAL or in the tracking system as e⁺e⁻ conversion pairs (PCM)

beam pipe (0.3% $X_0)$ + inner TPC vessels (2.4% $X_0)$

- ✤ Main sources of systematic uncertainties for direct photons:
 - \checkmark detector material budget \rightarrow conversion probability
 - ✓ π^0 reconstruction efficiency
 - ✓ p_T -shapes of π^0 and η production spectra

- ✓ ECAL and PCM for photon reconstruction and measurement of neutral mesons (background)
- ✓ With $R\gamma \sim 1.1$ and $\delta R\gamma/R\gamma \sim 3\%$ → uncertainty of $T_{eff} \sim 10\%$
- Development of reconstruction techniques and estimation of needed statistics are in progress
 - → potentially, MPD can provide <u>unique measurements</u> for direct photon production in the NICA energy range