Impact of Memory on Heavy Quark Diffusion in Hot QCD Matter

Santosh Kumar Das

School of Physical Science Indian Institute of Technology Goa Goa, India

India-JINR workshop on elementary particle and nuclear physics, and condensed matter research

□ Introduction

- **Heavy quark diffusion in QGP**
- **Exponential and Power-law Memory**
- **Thermalization & Diffusion with memory**
- **Summary and outlook**

Heavy Quark & QGP

SPS to LHC

 $\sqrt{s} = 17.3 GeV$ to $2.76 TeV \sim 100$ times

 $T_i = 200 \ MeV \ to \ 600 \ MeV \$ ~3 times

 $\tau_{c,b} >> \tau_{QGP}$ $M_{c,b} >> T_0$

Produced by pQCD process (before equilibrium) (Early production)

They go through all the QGP life time

No thermal production

Studying the HF dynamics in HIC

R_{AA} and v_2 Comparison with models

ALICE, JHEP 01 (2022) 174

Most of the models able to describe both R_{AA} and v_2 in certain p_T domain

Simultaneous description of R_{AA} and v_2 is still a challenge in the whole measured p_T and centrality ranges

Summary on the build-up of v_2 at fixed R_{AA}

 R_{AA} and V_2 are correlated but still one can have R_{AA} about the same while V_2 can change up to a factor 2-3 $\gamma(T)$ + Boltzmann dynamics+ hadronization+ hadronic phase

Heavy quark diffusion

$$D_s = T/M * \gamma(p \to 0)$$

$$\pi_{\rm th} = \frac{M}{2\pi T^2} (2\pi T D_s) \cong 1.8 \, \frac{2\pi T D_s}{(T/T_c)^2} \, \, {\rm fm/c}$$

He, Fries, Rapp, PRL,110, 112301 (2013)

 $2\pi T D_s \propto T^2$, corresponds to a constant thermalization time.

Scardina, Das, Minissale, Plumari, Greco PRC,96, 044905 (2017)

Heavy quark dynamics with memory effect

• Langevin Equation

$$\frac{d\mathbf{p}}{dt} = -\gamma \mathbf{p} + \eta(t)$$

•
$$\langle \eta(t) \rangle = 0$$

• $\langle \eta(t) \eta(t') \rangle = 2D\delta(t - t')$

• Generalized Langevin Equation

$$\frac{dp}{dt} = -\int_0^t \gamma(t, t') p(t') dt' + \eta(t)$$

Ruggieri, Pooja, Jai Prakash, Das PRD, 106 (2022) 3, 034032 • The correlation of fluctuations

$$\langle \eta(t)\eta(t')
angle = 2Df(|t-t'|)$$

 $\langle \eta(t)
angle = 0$

$$f(|t - t'|) = \frac{1}{2\tau} e^{-|t - t'|/\tau}$$

$$\frac{dh}{dt} = -\alpha h + \alpha \rho$$

The drag from FDT:

$$\gamma(t,t') = \frac{2D}{ET} \frac{e^{-|t-t'|/\tau}}{2\tau}$$

Ruggieri, Pooja, Jai Prakash, Das PRD, 106 (2022) 3, 034032

 $\eta(t) = \sqrt{\frac{2D}{\tau}}h(t)$

 $lpha = rac{1}{ au}$ $\langle h(t)h(t')
angle pprox rac{e^{-lpha|t-t'|}}{2}$

Impact of memory on heavy quark thermalization

$$\sigma_{p} = \langle (p_{T} - \langle p_{T} \rangle)^{2} \rangle$$

Memory delay the thermalization time

Liu, Das, Greco, Ruggieri, PRD 103, 034029 (2021) Ruggieri, Pooja, Jai Prakash, Das, PRD, 106 (2022) 3, 034032

Impact of memory on heavy quark suppression

Formation of R_{AA} are slowed down by memory

Ruggieri, Pooja, Jai Prakash, Das PRD, 106 (2022) 3, 034032

Longtail memory: time correlations decaying with a power law

$$h(t) = \sqrt{\kappa} \frac{\sqrt{\beta}}{\tau^{\beta}} \int_0^t (t-u)^{\beta-1} \xi(u) du, \qquad 0 < \beta < 1$$

 β fixes the power law at which correlations decay. ξ is a standard Gaussian noise

Longtail memory: Momentum broadening and randomization

For larger β the $\langle p^2(t) \rangle$ increases with a power of time larger than one.

The drag kernel is proportional to the correlator of h, and in the early evolution, this gets suppressed if $\beta \rightarrow 1$. Consequently, the effect of the damping given by the drag force is lowered by increasing β . The resulting motion is qualitatively similar to that of a damped oscillator.

Pooja, Das, Greco, Ruggieri PRD 108, 054026 (2023)

Longtail memory: Thermalization and D_s

$$K_{\rm eq} \equiv \frac{\int \frac{d^3 p}{(2\pi)^3} (\sqrt{p^2 + m^2} - m) e^{-\beta \sqrt{p^2 + m^2}}}{\int \frac{d^3 p}{(2\pi)^3} e^{-\beta \sqrt{p^2 + m^2}}}.$$

Need higher momentum diffusion coefficient D or, equivalently, a smaller Ds is in order to reproduce the experimental data.

Pooja, Das, Greco, Ruggieri PRD 108, 054026 (2023)

Conclusions and Perspectives:

- We have studied heavy quark diffusion with exponential and power-law memory.
- ***** Memory slows down the momentum evolution of heavy quarks.
- Formation of R_{AA} and v₂ are slowed down by memory
- ***** Thermalization time of the heavy quarks become larger.
- **\bullet** Requires smaller D_s To reproduce the data.

Impact of memory on heavy quark thermalization

$$\sigma_p = \frac{1}{2} \langle (p_x(t) - p_{0x})^2 + (p_y(t) - p_{0y})^2 \rangle$$

Liu, Das, Greco, Ruggieri, PRD 103, 034029 (2021)

Impact of memory on heavy quark thermalization

$$\sigma_p = \frac{1}{2} \langle (p_x(t) - p_{0x})^2 + (p_y(t) - p_{0y})^2 \rangle \qquad \qquad \sigma_p = \langle (p_T - \langle p_T \rangle)^2 \rangle$$

Memory delay the thermalization time

Liu, Das, Greco, Ruggieri, PRD 103, 034029 (2021) Ruggieri, Pooja, Jai Prakash, Das, arxiv: 2203.06712 [hep-ph]