Exotic hadrons from Lattice QCD

Nilmani Mathur

Collaborators: Parikshit Junnarkar (GSI, Germany), M. Padmanath (IMSc.) and Archana Radhakrishnan (TIFR)

India-JINR workshop 2023

Exotic Hadrons

> Hadrons whose quantum numbers require a valence quark content beyond qqq or $q\overline{q}$ are called as "exotics", e.g. $cc\overline{u}\overline{d}$, glueball

Hadrons whose spin, parity and charge conjugation are forbidden in the non-relativistic quark model are also often termed "exotics" (spin exotics)

> Cryptoexotics :

- mass/width does not fit with meson or baryon spectra
- overpopulation of the spectra
- production or decay properties incompatible with standard mesons/baryons

A constituent picture of Hadrons

- QCD : Fundamental degrees of freedoms are quarks (6 flavours) and gluons (8 degrees of freedom)
- Confinement conjecture: quarks and gluons must be combined into colour-neutral combinations of hadrons

Constituents	Combinations	Naming convention (quark model)	
$3\otimes\overline{3}$	1 ⊕ 8	Meson	
$3\otimes3\otimes3$	$1 \oplus 8 \oplus 8 \oplus 10$	Baryon	
$8\otimes8$	$1 \oplus 8 \oplus 8 \oplus 10 \oplus 10 \oplus 27$	Glueball	
$\overline{3}\otimes8\otimes3$	$1 \oplus 8 \oplus 8 \oplus 8 \oplus 10 \oplus 10 \oplus 27$	Hybrid	
$\overline{3}\otimes\overline{3}\otimes3\otimes3$	$1 \oplus 1 \oplus 8 \oplus 8 \oplus 8 \oplus 8 \oplus 10 \oplus 10 \oplus 27$	Tetraquark/molecule	
$3\otimes3\otimes3\otimes3\otimes3\otimes\overline{3}$	$ \begin{array}{c} 1 \oplus 1 \oplus 1 \oplus 8 \\ \oplus 10 \oplus 10 \oplus 27 \oplus 35 + \cdots \end{array} $	Pentaquark	
		?	

A constituent model of hadrons

• However, there can be strong mixings between different hadrons with the same quantum numbers

Combine with orbital angular momentum *L*

$$\vec{J} = \vec{L} \oplus \vec{S}, \quad P = (-1)^{L+1}, \quad C = (-1)^{L+S}$$

Combine with orbital angular momentum *L*

$$\vec{J} = \vec{L} \oplus \vec{S}, \quad P = (-1)^{L+1}, \quad C = (-1)^{L+S}$$

	L = 0	L = 1	L = 2	L = 3	
Singlet $(S = 0)$	0-+	1+-	2-+	3+-	
Triplet $(S = 1)$	1	{1,2,3}++	{1, 2, 3}	{2, 3, 4}++	
	S-wave	P-wave	D-wave	F-wave	

Allowed:
$$J^{PC} = 0^{-+}, 0^{++}, 1^{--}, 1^{+-}, 1^{++}, 2^{--}, 2^{-+}, 2^{++}, \dots$$

Are these all?

$$\vec{J} = \vec{L} \oplus \vec{S}, \quad P = (-1)^{L+1}, \quad C = (-1)^{L+S}$$

Forbidden (within such a model) quantum numbers : $J^{PC}: 0^{+-}, 0^{--}, 1^{-+}, 2^{+-}, 3^{-+}, 4^{+-}, ...$

Any meson with these quantum numbers will be called **EXOTIC MESON (spin exotic)**

Example of an Exotic

- \succ States with quantum number : 1^{-+}
- \succ It is not possible to write an interpolating field for this state with a form : $\overline{q}\Gamma q$
- Possible operators :

 $\bar{q}^a \gamma_A E^{ab}_i q^b$, $i\varepsilon_{ikl}\overline{q}^{a}\gamma_{k}B_{l}^{ab}q^{b} \Rightarrow \rho \otimes B \qquad \mathbb{B}_{i} = \epsilon_{ijk}\overrightarrow{D}_{i}\overrightarrow{D}_{k}$ $= \epsilon_{ijk} \frac{1}{2} \left([\overrightarrow{D}_j, \overrightarrow{D}_k] + \{ \overrightarrow{D}_j, \overrightarrow{D}_k \} \right)$ $i\varepsilon_{ikl}\bar{q}^a\gamma_4\gamma_kB_l^{ab}q^b$ $\varepsilon_{ikl}\bar{q}^{a}\gamma_{5}\gamma_{4}\gamma_{k}E_{l}^{ab}q^{b}$ $=\epsilon_{ijk}\frac{1}{2}[\overrightarrow{D}_{j},\overrightarrow{D}_{k}]$ $\bar{q} \gamma_{\Lambda} \bar{D} q$ $=-\frac{i}{2}\epsilon_{ijk}F^{jk}$ $\bar{q}^{a}_{\alpha}\gamma_{5}q^{a}_{\beta}\bar{q}^{b}_{\beta}\gamma_{5}\gamma_{i}q^{b}_{\lambda} \Rightarrow \pi \otimes a_{1}$ $\mathbb{E}_{i} = \mathbb{Q}_{iik} \overleftarrow{D}_{i} \overleftarrow{D}_{k}$ $\varepsilon_{iik} \bar{q} \gamma_5 \gamma_4 \gamma_i \bar{D}_k q$ $\varepsilon_{iik} \bar{q} \gamma_i \bar{B}_k q, \quad \bar{B}_i = \varepsilon_{iik} \bar{D}_i \bar{D}_k$ $\varepsilon_{iik}\bar{q}\gamma_{4}\gamma_{i}\bar{B}_{k}q$ Hadspec (2008)

Quest

Does nature permit what QCD allows?

Are there subatomic particles beyond mesons and baryons valence structures?

Exotic hadrons at LHC

Nature Physics, 18, 751(2022)

Parameter	Value
Ν	117 ± 16
$\delta m_{\scriptscriptstyle { m BW}}$	$-273 \pm 61 \text{keV} c^{-2}$
Γ_{BW}	410±165 keV

Exotic hadrons and lattice QCD

- Tetraquark and pentaquark hadrons have been observed experimentally with heavy quark contents.LHC, Belle, BES
- Are their possibilities to find more of those? And other multiquark states?
- What are the structures and properties of these exotic hadrons?
- What can lattice studies do?
 - Can predict more exotic states with possible valence structures and energies
 - Can decipher structures and properties of exotic hadrons

Heavy four-quark states

Possible states?: $\overline{b}\overline{b}ud, \overline{b}\overline{b}us, \overline{b}\overline{b}uc, \overline{b}\overline{b}sc,$ $\overline{b}\overline{c}ud, \overline{b}\overline{c}us \ etc.$ $J = 1, l_1 l_2 \overline{Q} \overline{Q} \qquad J = 0, ll \overline{Q} \overline{Q}$ LQCD: bound states of

$T_{bb}(\overline{b}\overline{b}ud), T_{bbs}(\overline{b}\overline{b}us), T_{bc}(\overline{b}\overline{c}ud), T_{cc}(\overline{c}\overline{c}ud)$

Expt: $T_{cc}(\overline{c}\overline{c}ud)$

$$\begin{aligned} \mathcal{J} &= \frac{1}{4g^{\alpha}} \left(\int_{\mu\nu}^{\alpha} \int_{\mu\nu}^{\alpha} + \sum_{j} \overline{g}_{j} \left(i \partial^{-\mu} D_{\mu} + m_{j} \right) g_{j} \\ & \text{where } \left(\int_{\mu\nu}^{\alpha} \equiv \partial_{\mu} \Pi_{\nu}^{\alpha} - \partial_{\nu} \Pi_{\mu}^{\alpha} + i f_{b\alpha}^{\alpha} \Pi_{\mu}^{b} \Pi_{\nu}^{c} \right. \\ & \text{and } D_{\mu} \equiv \partial_{\mu} + i t^{\alpha} \Pi_{\mu}^{\alpha} \\ & That's it ! \end{aligned}$$

$$S_{QCD} = \int d^4x \, L_{QCD}(m_{q,g_S})$$
$$\langle C \rangle = \frac{\int DGDqD\bar{q}Ce^{-S_{QCD}}}{\int DGDqD\bar{q}\,e^{-S_{QCD}}}$$

$$C_{\mathcal{O}}(t_i, t_f) = \sum_{\vec{x}} e^{-i\vec{p}.\vec{x}} \langle 0 | \mathcal{O}(\vec{x}_f, t_f) \bar{\mathcal{O}}(\vec{x}_i, t_i) | 0 \rangle$$

QCD

 $T_{bb} \equiv bbud$ **Results so far**

Summary plot: Pflaumer (2023)

 $T_{bb} \equiv \overline{b}\overline{b}us$ **Results so far**

India-JINR Workshop 2023

Summary plot: Pflaumer (2023)

India-JINR Workshop 2023

26(11)

14(4)

 $uu\bar{c}\bar{c}$

 $ss\bar{c}\bar{c}$

Heavier the heavy quark masses, deeper the binding

Lighter the light quark masses, deeper the binding

What does LQCD tell us?

 $T \propto (pcot\delta_0 - ip)^{-1}$

- Bound state: $p = i|p| \rightarrow e^{ipr} = e^{-|p|r}$
- Virtual bound state $p = -i|p| \rightarrow e^{ipr} = e^{|p|r}$ like the spin-singlet dineutron

Slide thanks: Padmanath and Sasa

What about T_{bc} : $\overline{b}\overline{c}q_1q_2$?

Various models predicted mixed results for $ud\overline{b}\overline{c} (1^+)$:

- HQ-symmetry inspired and non-chiral models: mostly unbound or very weekly bound
- QCD sum rule, chiral models: a bound state (both for 0 and 1-isospins) with binding over a wide range ~ 20-400 MeV ! Hudspith et al, Phys. Rev. D102, 114506 (2020)

B. Colquhoun et al, Rev. Mex. Fis. Suppl. 3 (2022) 3, 0308044

India-JINR Workshop 2023

Strong indication of a bound state of about 40 MeV binding energy

Tetraquarks with charm and bottom may be accessible to experiments - theoretical predictions can help in such searches!

M Padmanath, A Radhakrishnan, N Mathur arXiv:2307.14128

Glueball

A glueball is a gluonic bound state.

- In the theory of QCD gluon self coupling admits the existence of such a state.
- No conclusive experimental evidence of glueball as yet though the f_o states are indicative. Difficult to detect due to mixing but the searches are ongoing
- However, lattice QCD calculations can tell us about glueball spectra

$\mathbf{8} \otimes \mathbf{8}$ $\mathbf{1} \oplus \mathbf{8} \oplus \mathbf{8} \oplus \mathbf{10} \oplus \mathbf{10} \oplus \mathbf{27}$

Glueball

- A glueball is a gluonic bound state.
- In the theory of QCD glussics self coupling admits the existence of such a state.
- No conclusive experimental evidence of glueball as yet though the f_o states are indicative. Difficult to detect due to mixing but the searches are ongoing

- Signal-to-noise ratios in lattice glueball correlation functions with dynamical quarks are still very poor.
- Multiple channels with glueball, two-quarks and four-quarks with the same quantum numbers need to be addressed together
- India-JPFeWorkstade@@@eions with dynamical quarks including mixing effects are necessary

H Dibaryon

Bound state of two Λ $\Lambda \Lambda$ (*udssud*) Proposed by Jaffe (1976)

> Has to be below the two proton threshold. Then it will be bound

If it exists it is extremely stable and could be a candidate for SM dark matter? (May not be as oxygen may not exist with that!)

India-JINR Workshop 2023

No H dibaryon

H-dibaryon at $SU(3)_F$ symmetric point

Green et al : Phys. Rev. Lett. 127 (2021) 24, 242003

Are there heavy dibaryons?

• 9

5

b

 \mathcal{D}_{bs}

S

Junnarkar and NM : Phys. Rev. Lett. 123, 162003(2019)

Most beautiful dibaryons!

NM, Padmanath and Chakraborty: PRL 130, 111901 (2023)

Heavy Dibaryon Candidates?

PRL 123,162003 (2019): Junnarkar, NM PRL 130, 111901 (2023): NM, Padmanath and Chakraborty PRD 106, 054511 (2019): Junnarkar, NM

- Heavier the heavy quark masses, stronger the binding
- Lighter the light quark masses, stronger the binding

- Heavier the heavy quark masses, stronger the binding
- Heavier the light quark masses, deeper the binding

Conclusions and Outlooks

- Exotic hadrons beyond the meson and baryon configurations, such as tetraquarks and pentaquarks, have been discovered recently. Most of these exotic hadrons have one or more heavy valence quark contents.
- Lattice QCD provides a rigorous approach to hadron spectroscopy. Lattice QCD calculations have predicted and postdicted some of these exotic hadrons.
- Lattice QCD calculations have predicted more such exotic hadrons which could be discovered in future.
- Lattice QCD calculations are essential to understand the structures and properties of these exotic hadrons.