

THE SPIN PHYSIC DETECTOR PROJECT AT NICA

A. Guskov, avg@jinr.int

18.10.2023

Spin Physic Detector @ NICA

Polarized proton

Spin crisis

Naive quark model

Real situation

L - orbital moments of quarks and gluons

$$S_{N} = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L$$

Spin crisis

Longitudinal polarization of quarks:

... and gluons:

 $S_N = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L$

- ?

~30%

Alexey Guskov, Joint Institute for Nuclear Research

TMD PDF

Nucleon Spin Polarization

5 additional (TMD) functions describing the correlation between the nucleon spin, parton spin, and parton transverse momentum.

Deuteron

SPD experiment

NICA SPD: we plan to study how the proton spins

and the deuteron!

Especially their gluon component!

Concept of the SPD physics program

SPD gluon program

JPPNP: 103858

Model 3G

pp. 1-43 (col. fig: NIL)

arXiv:2011.15005

ARTICLE IN PRESS

Progress in Particle and Nuclear Physics xxx (xxxx) xxx

Review

On the physics potential to study the gluon content of proton and deuteron at NICA SPD

A. Arbuzov^a, A. Bacchetta^{b,c}, M. Butenschoen^d, F.G. Celiberto^{b,c,e,f}, U. D'Alesio^{g,h}, M. Deka^a, I. Denisenko^a, M.G. Echevarriaⁱ, A. Efremov^a, N.Ya. Ivanov^{a,j}, A. Guskov^{a,k,*}, A. Karpishkov^{1,a}, Ya. Klopot^{a,m}, B.A. Kniehl^d, A. Kotzinian^{j,o}, S. Kumano^p, J.P. Lansberg^q, Keh-Fei Liu^r, F. Murgia^h, M. Nefedov¹, B. Parsamyan^{a,n,o}, C. Pisano^{g,h}, M. Radici^c, A. Rymbekova^a, V. Saleev^{1,a}, A. Shipilova^{1,a}, Qin-Tao Song^s, O. Teryaev^a

^a Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia ^b Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100 Pavia, Italy On the physics potential to study the gluon content of proton and deuteron at #1 ^c INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy ^d II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee NICA SPD ^e European Centre for Theoretical Studies in Nuclear Physics and Related Area ^f Fondazione Bruno Kessler (FBK), I-38123 Povo, Trento, Italy A. Arbuzov (Dubna, JINR), A. Bacchetta (Pavia U. and INFN, Pavia), M. Butenschoen (Hamburg U., Inst. ^g Dipartimento di Fisica, Università di Cagliari, I-09042 Monserrato, Italy Theor. Phys. II), F.G. Celiberto (Pavia U. and INFN, Pavia and ECT, Trento and Fond. Bruno Kessler, Povo), ^h INFN Sezione di Cagliari, I-09042 Monserrato, Italy U. D'Alesio (Cagliari U. and INFN, Cagliari) et al. (Nov 30, 2020) Published in: Prog.Part.Nucl.Phys. 119 (2021) 103858 • e-Print: 2011.15005 [hep-ex] 며 pdf C DOI [→ cite **F** reference search \rightarrow 51 citations 🗟 claim

10

SPD and gluon structure of nucleon

SPD and others

Proton structure: landscape

SPD and others

SPD setup

SPD TDR and CDR could be found at: http://spd.jinr.ru/spd-cdr/

SPD: two stages

Physic of the first stage

 $pp \rightarrow (6q)^* \rightarrow NN Mesons,$

Non-perturbative QCD

- Spin effects in p-p, p-d and d-d elastic scattering
- Spin effects in hyperons production
- Multiquark correlations
- Dibaryon resonances
- Physics of light and intermediate nuclei collision
- Exclusive reactions
- > Hypernucei $dd \rightarrow K^+ K^+ {}^4_{\Lambda\Lambda} n_{,}$
- Open charm and charmonia near threshold

Perturbative QCD

arXiv:2102.08477

\sqrt{s}

SPD international collaboration

35 institutes from 14 countries, ~300 members

We are open for new participants!

NICA

Summary

- ➤ The Spin Physics Detector at the NICA collider is a universal facility for comprehensive study of polarized and unpolarized gluon content of proton and deuteron; in polarized high-luminosity p-p and d-d collisions at $\sqrt{s} \le 27$ GeV;
- Complementing main probes such as charmonia (J/ ψ and higher states), open charm and prompt photons will be used for that;
- SPD can contribute significantly to investigation of

O gluon helicity;

O gluon-induced TMD effects (Sivers and Boer-Mulders);

O unpolarized gluon PDFs at high-x in proton and deuteron;

- **O** gluon transversity in deuteron;
- 0...
- ➤ Comprehensive physics program for the first period of data taking: spin effects in p-p, p-d and d-d elastic scattering, spin effects in hyperon production, multiquark correlations, dibaryon resonances, physics of light and intermediate nuclei collisions, exclusive reactions, hypernuclei, open charm and charmonia near threshold, etc.;
- ➤The SPD gluon physics program is complementary to the other intentions to study the gluon content of nuclei (RHIC, AFTER, LHC-Spin, EIC, JLab experiments) and mesons (AMBER, EIC);
- ► More information including **SPD CDR** and **TDR** could be found at <u>http://spd.jinr.ru</u>.