Status of the Baikal-GVD neutrino telescope and selected results

Bair Shaybonov, JINR 18.10.2023, India-JINR workshop

High-energy neutrino (>10 GeV) as astrophysical messenger

- Neutrino is a neutral stable light elementary particle weakly interacting with matter
- Cross section grows rapidly with increasing energy (~1 nb @1PeV)
- Abundantly born in hadronic processes in space accelerators (active galactic nuclei, supernova remnants, microquasars, gamma-ray bursts, tidal disruption events etc.)
- Unlike high-energy gamma rays:
 - freely escape from the source
 - freely distributed in the Universe
- Unlike cosmic rays (high-energy p, He, etc.):
 - not deflected by magnetic fields
 - trace production and acceleration sites of neutrino and thus cosmic rays

M.Markov, **1960**: (JINR) "We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation" Proc. 1960 ICHEP, Rochester, p. 578.

Neutrino sources and energy scale

Neutrino telescope: operation principle Track-like event

- Large arrays of PMTs in deep water or ice
- Cherenkov light detected by PMTs
- Track-like events from ν_{μ} CC
- Cascade-like events from ν_e & ν_τ CC + NC
- Direction reconstructed from hit positions and times
- Energy reconstructed from hit charges
- Look downward through the Earth to suppress atmospheric muon background

Neutrino telescope: operation principle Cascade like event

- Large arrays of PMTs in deep water or ice
- Cherenkov light detected by PMTs
- Track-like events from $\nu_{\mu}\,{\rm CC}$
- Cascade-like events from ν_e & ν_τ CC + NC
- Direction reconstructed from hit positions and times
- Energy reconstructed from hit charges
- Look downward through the Earth to suppress atmospheric muon background

Current neutrino telescopes

A difficult task both technically and scientifically:

- Detector volume should be 1 km³ lacksquareor more of natural environment
- Clear water or ice lacksquare
- Deep underwater, under ice to suppress the background of other particles
- Located in both the Northern and lacksquareSouthern hemispheres to cover the entire celestial sphere

Combined into the global neutrino network (GNN)

Methods of background suppression

Pictures borrowed from talk by R. Ruiz

Transient searches & multimessenger approach

γ

V

8

Baikal-GVD site

- Southern basin of the lake
- ~3.6 km offshore
- Flat area at depths 1366–1367 m
- High water transparency:
 - Absorption length: 22 m
 - Effective scattering length: 480 m
- Moderately low optical background: 15–50 kHz

Telescope deployment From the ice cover of the lake (mid-February - early April)

Bed cable laying

COST CO

The optical module - basic element of the telescope

17 inches sphere (42 cm)

10 inch Hamamatsu PMT R7081-100

	Baikal-GVD stat April 2023	tus
•	3456 Optical modules on 96 strings (12 clusters)	0 м —
•	8 strings form a cluster - independent array of optical modules	
•	36 optical modules per string	
•	60 m between strings in a cluster, 250-300 m between clusters	750 м —
•	More than half of 1 km ³ of water volume	525 м 36 ОМ
•	384 Acoustic modules for positioning	1275 м 1366 м
•	72 LED beacons and 11 powerful laser sources for calibration	

Planned to be completed in 2027₁₃

Single-cluster tracks

- Low energy threshold
- Optimal sensitivity to nearly vertical tracks
- 90% of recorded track events

Single-cluster cascades

- High energy threshold
- Good energy resolution
- Relatively rare events

Multi-cluster tracks

- Moderately low energy threshold
- Optimal sensitivity to inclined tracks
- Best angular resolution

ΝC, ν ν CC

 $\nu_{\mu} CC$

Multi-cluster cascades

- Very high energy threshold
- Excellent energy resolution
- Very rare events

14

Single cluster muon track analysis

- Direction resolution: 0.3-1.0 degrees
- Energy resolution: factor of 3
- Work in progress towards higher sensitivity and resolution

Events per year per cluster

atm. nu	102.2
atm. mu	12.5
SUM:	114.7
data	106.0

Preliminary

15

Muon track events

 $\theta_{\text{zenith}} = 169.78^{\circ}$ $N_{strings} = 3$ N_{hits} = 19

 $\theta_{\text{zenith}} = 161.78^{\circ}$ $N_{strings} = 2$ $N_{hits} = 15$

cluster 4, run 99 evt. 438088 $\theta_{\text{zenith}} = 162.22^{\circ}$ $N_{strings} = 3$ N_{hits} = 18

Multi-cluster track event

Real Multi-cluster event example

Median energy ~ 4 TeV Work in progress

17

Cascade event analysis

neutrino effective area for cascade detection

0 25 30 35 20 10 15 40 5 Mismatch angle, degree

- Sensitive to all-flavour CC and NC interactions over the whole sky
- Effective volume for E > 100 TeV >0.5 km³
- Directional resolution for cascades: ~ 4.5°
- Energy resolution: ~ 30%

Astrophysical Diffuse neutrino flux with Baikal-GVD

- Data analysed April 2018 March 2022
- Cascade energy >15 TeV
- Upward going cascades

	Events
Atm. muons MC	0.5
Atm. neutrino MC	2.7
Astro neutrino MC best fit	6.3
Data	11

https://doi.org/10.1103/PhysRevD.107.042005

Excess over the atmospheric background: 3.05σ

High-energy cascade sky map and flux

RA

Most prominent downgoing and upgoing cascade events

https://doi.org/10.1093/mnras/stad2641

• The best fit parameters for the single power law hypothesis:

$$\Phi_{astro}^{\nu+\bar{\nu}} = 3 \times 10^{-18} \phi_{astro} \left(\frac{E_{\nu}}{E_0}\right)^{-\gamma_{astro}}$$

- Baikal-GVD (2018-2021, Upward-going) this study, best fit
- IceCube HESE (7.5y, Full-sky) Phys. Rev. D 104, 022002 (2021)
- IceCube Inelasticity Study (5y, Full-sky) Phys. Rev. D 99, 032004 (2019)
- IceCube Cascades (6y, Full-sky) Phys. Rev. Lett. 125, 121104 (2020)
- IceCube Tracks (9.5y, Northern Hemisphere), The Astrophysical Journal 928, 50 (2022)
- ANTARES Cascades+Tracks (9y, Full-Sky) PoS(ICRC2019) 891 (2020)

https://doi.org/10.1103/PhysRevD.107.042005

Most energetic upgoing cascade events Best candidates for neutrino events of astrophysical origin

Closest sources (in 6 degrees):

- TXS 0506+056 Blazar (BL Lac) at z= 0.34 (5.7 Gly) is IceCube neutrino source observed at 3.7σ
- This event is probably of astrophysical origin (signalness = 97%).

arXiv:2210.01650

and event uncertainty circle

Closest sources (in 3 degrees):

- PKS 0302-16 : unknown type of source
- PMN J0301-1652 : unknown type of source

Event triplet near Galactic plane Intriguing events

https://doi.org/10.1093/mnras/stad2641

22

PeV downgoing cascade Most energetic cascade so far

Sky plot of γ -ray sources and event uncertainty circle

Closest sources (in 5 degrees):

- RBS 1409 BL Lac z=unknown
- 1ES 1421+582 z=unknown

Baikal-GVD follow up of IceCube-211208A / PKS 0735+17

- Dec 8, 2021 20:02: IceCube "Astrotrack Bronze" neutrino event in vicinity of bright blazar PKS 0735+17
- Active state of PKS 0735+17 reported in optical (MASTER), HE gamma-rays (Fermi LAT), X-rays (Swift XRT) and radio
- Baikal-GVD found a downward-going (30° above horizon) cascade-like event 4 hours after the IceCube alert and in 5.3° from it and 4.7° from PKS 0735+17
 - $E \approx 43 \text{ TeV}$
 - PSF 50% (68%) containment radius = 5.5 deg (8.1 deg)
 - Pre-trial p-value = 0.0044 (2.85 σ) [24 hr, 5.5 deg cone]
 - Trial factor ~ 40 (total number of IceCube alerts analyzed)

Astronomy telegram ATeL 15112

Conclusion

- Baikal-GVD is the second largest neutrino telescope and the first in the Northern hemisphere
- Baikal-GVD has already >0.5 km³ water volume and grows every year
- Cascade analysis shows astrophysical neutrino flux (3.05 σ) and some intriguing events
- Muon track analysis is under way. Stay tuned

Thank you for your attention!

Baikal-GVD collaboration

- Joint Institute for Nuclear Research, Russia
- Institute for Nuclear Research of the Russian Academy of Sciences, Russia
- Comenius University, Slovakia
- Czech Technical University in Prague, Czech Republic
- Irkutsk State University, Russia
- Skobeltsyn Research Institute of Nuclear Physics, Russia
- Institute of Nuclear Physics ME RK, Kazakhstan
- AO 'LATENA' (Joint Stock Company), Russia
- St. Petersburg State Marine Technical University, Russia

