Probing Fission Dynamics using Fission Fragment Spectroscopy

Anagha Chakraborty

Department of Physics, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal - 731235

Nuclear Fission

- Exothermic dynamical process
- Compound Nucleus shape evolution –

SADDLE SCISSION points

- Collective rearrangement of nucleonic matter
- \checkmark Emission of Prompt $\underline{\gamma}$ and Neutrons

Complementary Fragments (FF1 & FF2)

(based on conservation of nucleons)

$$\Delta E = (1/5) \varepsilon^2 (2a_s A^{2/3} - a_c Z^2 A^{-1/3})$$

Prompt γ-spectroscopy: Fission Dynamics

Courtesy: PhD Thesis of S. Gupta, HBNI (2020)

Experimental Details

INGA @ VECC, Kolkata, India

✓ Six Compton suppressed Clover detectors and one LEPS detector <</p>

4 were at 90°, 2 were at 125°, LEPS was at 40°

- ✓ Self-supporting ²³²Th target of thickness \approx 25 mg/cm²
- ✓ 30 MeV α particle beam; 6 days of experiment
- ✓ DSP based DAQ, consisting of 250 MHz 12-bit PIXIE-16 digitizers
- ✓ About 3.3 × 10^8 γ−γ coincidences were recorded

Scenarios from Correlated Fission Fragments(FF): Correlated Fragments $\alpha + {}^{232}\text{Th}(Z = 90) \rightarrow {}^{236}\text{U}*(Z=92) \rightarrow \text{FF1}(A_1,Z_1) + \text{FF2}(A_2,Z_2)$

 $Z_1 + Z_2 = Z = 92$ $A_1 + A_2 = 236$

 $Z_1 = Z_2 = Z/2 = 46$ (Pd) $A_1 = A_2 = A/2 = 118$ (Symmetric Fission)

 $Z_1 < Z_2 \text{ (General Case) } A_1 < A_2 \text{ (General Case) (Asymmetric Fission)} \\ A_1 + A_2 + \nu_n = 236 \qquad \nu_n \text{ : number of prompt neutrons (10)}$

Coincidence spectra from correlated fission fragment pairs : $A_1 + A_2 + v_n = 236$ Kr (FF1) and Ba (FF2)

Analysis Procedure: Extraction of Fragment Yields

Detail Analysis Procedure: Aniruddha Dey *et al.*, Phys. Rev. C 103 (2021) 044322

Necessary Corrections

✓ Fragment nucleus produce directly from fission: Genuine event ✓ Parent nuclide β -decays to the concerned fragment nucleus : Bias

Correction Measures:

(a)Efficiency correction for both the gated (FF1) and observed (FF2) transitions

(b) Correction due to internal conversion phenomena $[\sim 1\% (^{118}Cd) \text{ to } 74\% (^{150}Ce)]$ $\mathbf{Z} = \mathbf{48}$ $\mathbf{Z} = \mathbf{58}$

(c) Correction due to isomeric level (no need!)

(d) Correction from Precursors' Beta-decay [~ 2% (⁸⁶Se) to 98%(⁹²Zr)]

(e) Correction due to discrete side-feeding $[\sim 13\% (^{98}\text{Zr})]$

Experimental Results: Relative coincidence isotopic yield distribution

Mass number, A

Aniruddha Dey et al., Phys. Letts. B 825 (2022) 136848

K.Hirose et al., PRL 119, 222501 (2017)

P.Moller et al., Nature 409, 785 (2001)

Multichance fission probability: Calculated following GEF

 $\alpha + {}^{232}$ Th @ 30 MeV **E**_{ex} = 21.5 MeV

Experimental Results: Relative charge yield distribution

Symmetric partition: (Pd-Pd) & (Ru-Cd)

Importance of Multi-chance fission

Experimental Results: Mass yield distribution profile

EXILL @ ILL, Grenoble, France

✓ Second hot fission mode (in %)

: 1.2 ± 0.3

✓ Hyper deformed structure:

Neutron rich Te, Xe, and Ba

ILL Data: ${}^{235}U(n_{th},f)$ E_{ex} = 6.5 MeV

Aniruddha Dey et al., under review Gaussian Fit: $\sigma = 6.04 \pm 0.4$ u (both set of data) Additional Fit: $\sigma \sim 2.4 \pm 0.7$ u (for ILL data)

Second hot fission mode

VECC Data: 232 Th(α ,f) @ 30 MeV E_{ex} = 21.5 MeV

*****Simultaneous measurement of the mass and charge yield distribution

Presence of triple-hump distribution: Contribution from

 (a) SL (Super long Symmetric mode)
 (b) Two asymmetric modes of

 17% Symmetric and 83% Asymmetric contributions Standard I and Standard II

♦ Persistence of two competitive compound nucleus fission modes in the low-energy Fission of ²³⁶U* (*surrogate to 14 MeV neutron induced fission of ²³⁵U*)

*****Evidences for the possible co-existing effects of shell closure and multi-chance fission

*****Presence of Second Hot Fission Mode: Possible Energy Mapping

Collaborators

BARC, Mumbai, India

S. Mukhopadhyay

D. C. Biswas

 ✓ Visva-Bharati, Santiniketan, India

Flerov Laboratory of Nuclear
 Reactions, JINR, Dubna, Russia
 Aniruddha Dey

VECC-INGA CampaignEXILL Campaign

Project Sanction No. 37(3)/14/17/2016-BRNS

Project Code No. 71344

Project No. CRS/2021-22/02/472

File Number: CRG/2021/004680

