Influence of entrance channel shell closure on dissipative nature of nuclear fission

Kajol Chakraborty

Ph.D. Research Scholar Department of Physics and Astrophysics University of Delhi, New Delhi, India

Co-authors : M.T. Senthil Kannan (VECC), Jhilam Sadhukhan (VECC), S. Mandal (University of Delhi)

India-JINR workshop on elementary particle and nuclear physics, and condensed matter research

NUCLEAR DISSIPATION in FUSION-FISSION

Neutron Multiplicity Results : ^{220,222,224}**Th**

Systematics of pre-scission neutron multiplicities

S.No	CN	Reaction	28 reactions	S.No	CN	Reaction
1	¹⁹⁷ Tl	¹⁶ O+ ¹⁸¹ Ta		15	²¹⁶ Rn	¹⁸ O+ ¹⁹⁸ Pt
2	¹⁹⁷ Tl	¹⁹ F+ ¹⁷⁸ Hf		16	²¹⁶ Ra	¹² C+ ²⁰⁴ Pb
3	²⁰⁰ Pb	¹⁹ F+ ¹⁸¹ Ta		17	²¹⁶ Ra	¹⁹ F+ ¹⁹⁷ Au
4	²⁰³ Bi	¹⁹ F+ ¹⁸⁴ W		18	²¹⁷ Fr	¹⁹ F+ ¹⁹⁸ Pt
5	²⁰⁴ Pb	¹⁸ 0+ ¹⁸⁶ W	$197 \le A_{CN} \le 251$	19	²²⁰ Th	¹⁶ O+ ²⁰⁴ Pb
6	²⁰⁶ Po	¹² C+ ¹⁹⁴ Pt	CN	20	²²² Th	¹⁶ O+ ²⁰⁶ Pb
7	²¹⁰ Po	¹² C+ ¹⁹⁸ Pt		21	²²⁴ Th	¹⁶ O+ ²⁰⁸ Pb
8	²¹⁰ Po	¹⁸ O+ ¹⁹² Os		22	²²⁸ U	¹⁹ F+ ²⁰⁹ Bi
9	²¹⁰ Rn	¹⁶ O+ ¹⁹⁴ Pt		23	²²⁹ Np	²⁰ Ne+ ²⁰⁹ Bi
10	²¹² Rn	¹⁸ O+ ¹⁹⁴ Pt		24	²⁴³ Am	¹¹ B+ ²³² Th
11	²¹³ Fr	¹⁹ F+ ¹⁹⁴ Pt	$A_{\rm P} \leq 20$	25	²⁴⁴ Cm	12C+232Th
12	²¹³ Fr	¹⁶ O+ ¹⁹⁷ Au		26	²⁴⁸ Cf	¹¹ B+ ²³⁷ Np
13	²¹⁴ Rn	¹⁶ O+ ¹⁹⁸ Pt		27	²⁴⁸ Cf	¹⁶ O+ ²³² Th
14	²¹⁵ Fr	¹⁹ F+ ¹⁹⁶ Pt		28	²⁵¹ Es	¹⁹ F+ ²³² Th

E1 bin 45 MeV \leq E* \leq 55 MeV	E2 bin 55 MeV ≤ E* ≤ 65 MeV		E3 bin 65 MeV ≤ E* ≤ 75 MeV
		J	

Systematics of pre-scission neutron multiplicities

Variation of v_{pre} in the energy group E_2 along (a) the fissility parameter χ and (b) the ratio of entrance channel mass -asymmetry to Businaro-Gallone mass asymmetry parameter (α/α_{BG}).

$$X = \left(\frac{Z^2}{A}\right) / \left(\frac{Z^2}{A}\right)_{crit}$$

$$\alpha = (A_T - A_P) / (A_T + A_P)$$

$$(Z^2/A)_{crit} = 50.883 * \left(1 - 1.7826 * \left(\frac{A - 2Z}{A}\right)^2\right)$$
U. Businaro, S. Gallone, Nuovo Cimento 5 (1957) 315–317.

Kajol Chakraborty, DU

Systematics of pre-scission neutron multiplicities

Reaction	δ_{sh}	Reaction	δ_{sh}
¹⁶ O+ ¹⁸¹ Ta	-27	¹⁸ O+ ¹⁹⁸ Pt	-8
¹⁹ F+ ¹⁷⁸ Hf	-27	¹² C+ ²⁰⁴ Pb	-8
¹⁹ F+ ¹⁸¹ Ta	-24	¹⁹ F+ ¹⁹⁷ Au	-8
¹⁹ F+ ¹⁸⁴ W	-21	¹⁹ F+ ¹⁹⁸ Pt	-7
¹⁸ 0+ ¹⁸⁶ W	-20	¹⁶ O+ ²⁰⁴ Pb	-4
¹² C+ ¹⁹⁴ Pt	-18	¹⁶ O+ ²⁰⁶ pb	-2
¹² C+ ¹⁹⁸ Pt	-14	¹⁶ O+ ²⁰⁸ Pb	0
180+192Os	-14	¹⁹ F+ ²⁰⁹ Bi	+4
¹⁶ O+ ¹⁹⁴ Pt	-14	²⁰ Ne+ ²⁰⁹ Bi	+5
¹⁸ O+ ¹⁹⁴ Pt	-12	¹¹ B+ ²³² Th	+19
¹⁹ F+ ¹⁹⁴ Pt	-11	¹² C+ ²³² Th	+20
¹⁶ O+ ¹⁹⁷ Au	-11	¹¹ B+ ²³⁷ Np	+24
¹⁶ O+ ¹⁹⁸ Pt	-10	¹⁶ O+ ²³² Th	+24
¹⁹ F+ ¹⁹⁶ Pt	-9	¹⁹ F+ ²³² Th	+27

Deviation δ_{sh} of the neutron and proton numbers in the target and projectile from the respective nearest magic numbers

4.0
4.0
(C)
3.5
3.5
3.0
2.5
2.5
3.4
9 10
1.5
-30 -20 -10 0 10 20 30

$$\delta_{sh}$$

Variation of v_{pre} in the energy group
E₂ with δ_{sh} .

$$(\delta_{sh})_{proj,prot} = Z_{12C} - Z_{16O} = -2$$

$$(\delta_{sh})_{tar,prot} = Z_{204Pb} - Z_{208Pb} = 0$$

$$(\delta_{sh})_{tar,prot} = N_{12C} - N_{16O} = -2$$

$$(\delta_{sh})_{tar,neut} = N_{204Pb} - N_{208Pb} = -4$$

Kajol Chakraborty, DU

Statistical Model Analysis

Bohr Wheeler fission width $\Gamma_{\rm f}^{\rm BW}(E^*, \ell, K=0)$ $=\frac{1}{2\pi\rho_{\rm s}(E^*)}\int_0^{E^*-B_{\rm f}(\ell)}\rho_{\rm s}(E^*-B_{\rm f}(\ell)-\epsilon)d\epsilon,$ Evaporation CN* Fission PO. nor collective enhancement in the level density p(E)SE*·K p*(E*-B_ E)&E* OTE-BESISE Kcol $\rho(E^*) = K_{\text{coll}}(E^*)\rho_{\text{intr}}(E^*),$ Statistical ER G.S. nuclear orientation along the symmetry axis Saddle B tential $B_r = B_r - (\delta_g - \delta_s)$ B $\Gamma_{\rm f}^{\rm BW}(E^*,\ell,K)$ $= \Gamma_{\rm f}^{\rm BW}(E^*, \ell, K = 0) \frac{(K_0 \sqrt{2\pi})}{2\ell + 1} \operatorname{erf}\left(\frac{\ell + 1/2}{K_0 \sqrt{2}}\right)$ Elongation Equilibrium CN Kramers' fission width $\Gamma_{\rm f}^{\rm Kram}(E^*, \ell, K)$ Potential energy as a function of elongation. $= \Gamma_{\rm f}^{\rm BW}(E^*, \ell, K) \left\{ \sqrt{1 + \left(\frac{\beta}{2\omega_s}\right)^2 - \frac{\beta}{2\omega_s}} \right\},\$ Reduced dissipation strength, *B* tuned to reproduce v_{pre}

Figure is courtesy of T. Banerjee et al., Phys. Rev. C 99, 024610 (2019)

Statistical Model Analysis

$$\delta = M_{exp} - M_{LDM}.$$
FRLDM fission barrier
A.J. Sierk, Phys. Rev. C 33 (1986) 2039–2053.

$$B_{f}(\ell) = B_{f}^{LDM}(\ell) - (\delta_{g} - \delta_{s}),$$
Ignatyuk's level density
Ignatyuk's level density
Ignatyuk et al., Yad. Fiz. 21 (1975) 485–490.

$$a(E^{*}) = \tilde{a} \left[1 + \frac{1 - exp(-\frac{E^{*}}{E_{D}})}{E^{*}} \delta \right].$$
Shell Corrections in Fission Barrier and
Level Density Parmeter
Two Set of Calculations : Set I (without)
and Set II (with) shell corrections.

$$\delta = M_{exp} - M_{LDM}.$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

$$10^{4}$$

Kajol Chakraborty, DU

Set-I Results : Impact of Entrance Channel Shell Closure

Variation of the reduced dissipation coefficient β with δ_{sh} obtained for Set-I in the excitation energy bin (a) E1, (b) E2, and (c) E3

K. Chakraborty, M.T. Senthil Kannan, Jhilam Sadhukhan, S. Mandal, Physics Letters B 843 (2023) 138021

Set-II Results : Impact of Entrance Channel Shell Closure

K. Chakraborty, M.T. Senthil Kannan, Jhilam Sadhukhan, S. Mandal, Physics Letters B 843 (2023) 138021

Results : Impact of Entrance Channel Shell Closure

Variation of β with δ_{sh} obtained by fitting the ER cross-section data

Hypothesis of complete equilibrium invalid!!

Detailed statistical model calculations for 28 reactions predominated by complete fusion-fission channel reveal a higher dissipation strength, β to reproduce $v_{_{pre}}$ and a lower β to reproduce ER cross-sections for systems having a closed shell structure in the incoming channel. The investigations highlight the fact that the pathway to fission is more hindered for systems with closed shell nuclei as reaction partners.

K. Chakraborty, M.T. Senthil Kannan, Jhilam Sadhukhan, S. Mandal, Physics Letters B 843 (2023) 138021

