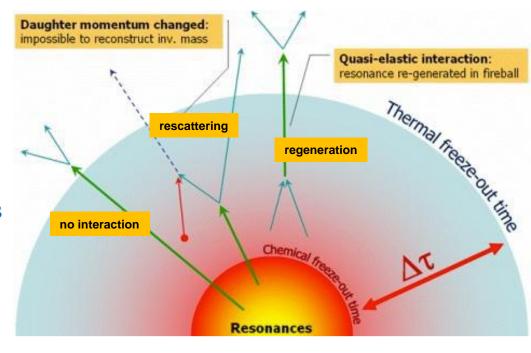


Hadronic resonance production (with ALICE at the LHC

Sergey Kiselev (NRC KI - ITEP Moscow) on behalf of the ALICE Collaboration

- Motivation
- ALICE detector
- Signal extraction
- $p_{\rm T}$ spectra
- Mean transverse momentum
- Yields
- Ratios to stable hadrons
- Nuclear modification factors
- Summary

Motivation

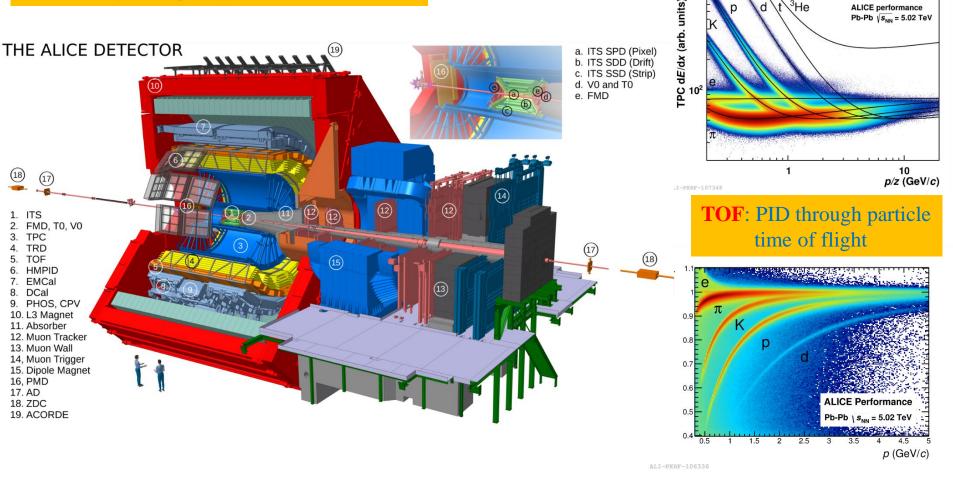

• pp and p—Pb collisions:

- ✓ the baseline for heavy-ion collisions
- ✓ system size dependence
- ✓ role of cold nuclear matter
- ✓ study of collectivity in small systems

• AA collisions:

- ✓ in-medium energy loss
 - → nuclear modification factor for resonances
- ✓ restoration of chiral symmetry
 - → modification of width, mass and branching ratio
- ✓ regeneration and rescattering effects
 - → modification of yield and ratios to stable hadrons
 - → timescale between chemical and kinetic freeze-out

Resonance	cτ (fm)	Decay	System @ energy (TeV)	
$\rho(770)^{0}$	1.3	ππ	pp/Pb–Pb @ 2.76	
K*(892)0	4.2	Κπ	pp/p–Pb/Pb–Pb/Xe–Xe @ all energies	
$K^*(892)^{\pm}$	4.2	$K_S^0 \pi$	pp @ 5.02/8/13 Pb-Pb @ 5.02	
f ₀ (980)	~ 5	π π	pp/p–Pb @ 5.02	
$\Sigma(1385)^{\pm}$	5-5.5	Λ π	pp@7 p–Pb /Pb–Pb @ 5.02	
Λ(1520)			pp @ 7 p-Pb @ 5.02 Pb-P b@ 2.76/5.02	
$\Xi(1530)^0$			pp @ 7 p–P b@ 5.02 Pb–Pb @ 2.76	
φ(1020)	46.4	кк	pp/p–Pb/Pb–Pb/Xe–Xe @ all energies	


ALICE detector

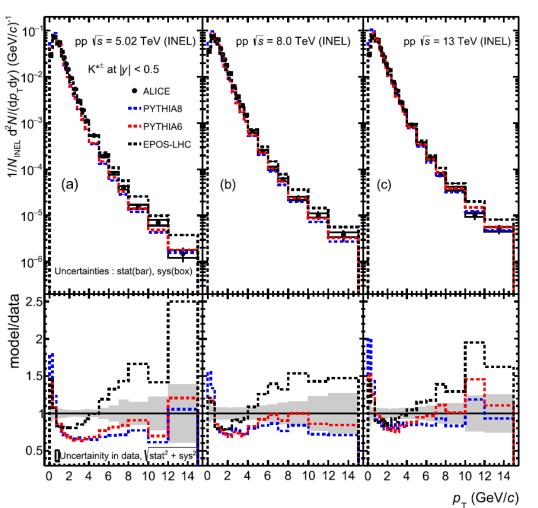
V0 (scintillators):

- → triggering minimum bias collisions
- → centrality/multiplicity estimator

ITS: tracking and vertexing

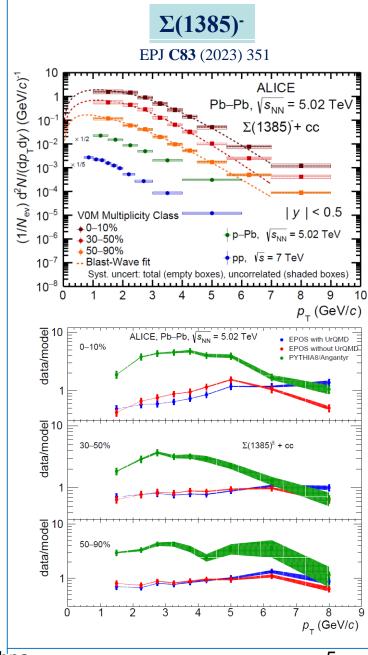
TPC: tracking and PID through dE/dx

Signal extraction **NEW** $f_0(980)$ $\Sigma(1385)^{-}$ K*(892)± arXiv:2206.06216 EPJ C83 (2023) 351 Counts/(0.01 Gev/c²) Counts / (0.02 GeV/c²) Counts / (4 MeV/c²) **ALICE** Data (stat. uncert.) Signal + background Pb–Pb, $\sqrt{s_{NN}}$ = 5.02 TeV, 30–50% pp. $\sqrt{s} = 5.02 \text{ TeV}$ ---- Total background $f_0(980)$ $\Sigma(1385)^{-} + cc$ 25 ---- f₂(1270) Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ Te}$ $2.5 < p_{_{
m T}} < 3.5 \; {\rm GeV}/c$ ----- ρ(770) $K^{*\pm}$, |y| < 0.5---- Residual background $2.50 < p_{\tau}(\text{GeV}/c) < 3.00$ $< p_{_{\perp}} < 6 \text{ (GeV/}c)$ + Data (stat. uncert.) Combined fit Data 200 -BW+expol --- Residual background 100 Extracted signal 200 1.3 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.35 $M_{\rm K^0\pi} \, ({\rm Gev}/c^2)$ $M_{\Lambda\pi} \, (\text{GeV}/c^2)$ $M_{\pi\pi}$ (GeV/ c^2) ALI-PUB-524248 I-PUB-523548 $\Lambda(1520)$ 3.0 < p₊ < 3.5 GeV/c $1.0 < p_{_{\rm T}} < 1.25 \,{\rm GeV}/c$ $1.75 < p_{_{\rm T}} < 2.00 \,{\rm GeV}/c$ counts / (5 MeV/ c^2 counts / $(5~{
m MeV}/c^2)$ counts / (5 MeV/ c^2) 70-90%-40-50% 0-10% → data $\Lambda(1520) \rightarrow pK^- + cc.$ |y| < 0.5(bkg. subtracted) global fit (Voigt. + residual bkg.) residual bkg. 20 0. **ALICE Performance** Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ ALI-PREL-516580 M_{pK} (GeV/ c^2) $M_{\rm pK}$ (GeV/ c^2) $M_{\rm pK}$ (GeV/ c^2) 18-23 Sep 2023 XXV Baldin ISHEPP, Dubna


S.Kiselev

$p_{\rm T}$ spectra

PL **B828** (2022) 137013

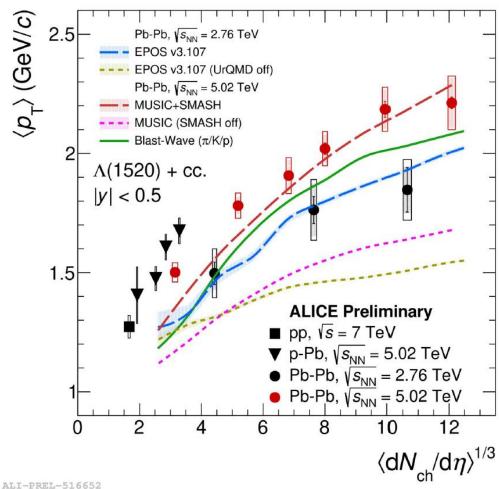


EPOS: PR **C93** (2016) 014911 PYTHIA8/Angantyr: JHEP 10 (2018) 134,

18-23 Sep 2023

models do not fully describe data

XXV Baldin ISHEPP, Dubna S.Kiselev



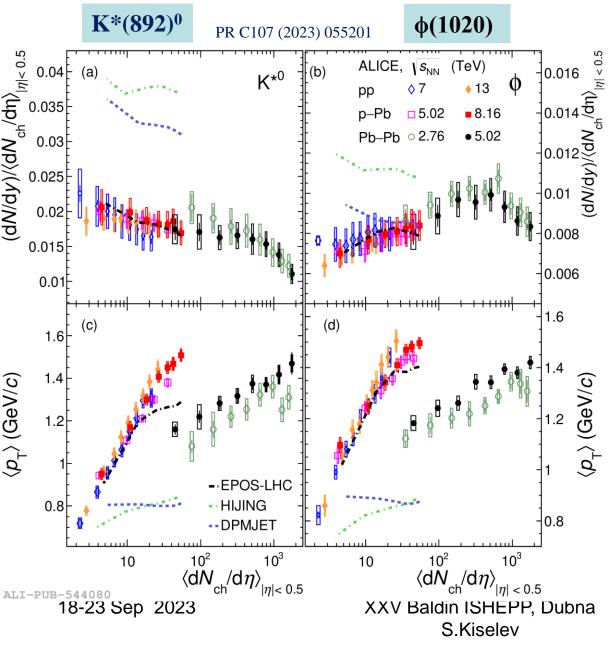
$\langle p_{\rm T} \rangle$ vs. $dN_{\rm ch}/d\eta$

 $\Lambda(1520)$

Pb-Pb@5.02 TeV

 $\langle p_{\rm T} \rangle$ rises with increasing multiplicity

models with rescattering effects (EPOS+UrQMD, MUSIC+SMASH) reproduce data


models without hadronic afterburner underestimate the measurements

MUSIC:arXiv:2105.07539

LI-PREL-516652

NEW

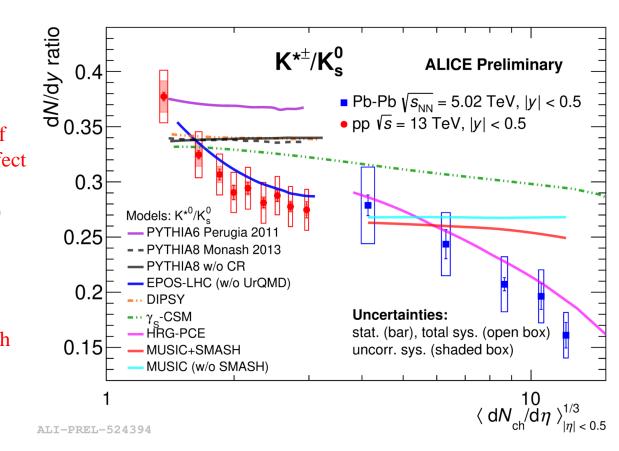
yields, $\langle p_{\rm T} \rangle$ vs. $dN_{\rm ch}/d\eta$

yields:

- independent of collision system and energy
- appear to be driven by event multiplicity

pp, p–Pb:

steeper increase with multiplicity can be understood as the effect of color reconnection between strings produced in multi-parton interactions, PL B727 (2013) 371


$K^{*\pm}/K$ vs. $dN_{ch}/d\eta$

NEW

 $\tau(K^*) = 4.2 \text{ fm/}c$

K*±/K shows a ~55% suppression

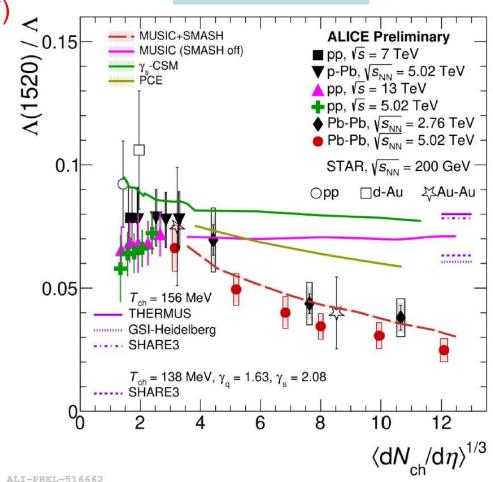
- going from peripheral Pb–Pb
 collisions to most central Pb–Pb
- → consistent with the rescattering of the daughters as the dominant effect
- models with rescaterring effect
 (MUSIC+SMASH and HRG-PCE)
 qualitatively describe the data
- pp: hint of decrease
- K** measurement is consistent with previous results for K*0

HRG-PCE: PRC102(2020)024909 γ_s-CSM: PRC100(2019)054906

Λ^*/Λ vs. $dN_{ch}/d\eta$

NEW(pp@5.02,13 Pb-Pb@5.02 TeV)

- Λ */ Λ shows a ~ 70% suppression
 - going from peripheral Pb—Pb
 collisions to most central Pb—Pb
 - \rightarrow consistent with the rescattering of the daughters as the dominant effect it is larger than ~ 55% for $K^{*\pm}$ although $\tau(\Lambda^*) = 3 \tau(K^*)$
 - follows Pb-Pb@2.76 TeV (PR C99 (2019) 02490) suppression trend
 - confirms the trend seen by STAR at 200 GeV


•MUSIC-SMASH:

- reproduce the multiplicity suppression trend

•thermal models

- all overestimate the ratio in central Pb-Pb collisions
- pp: no suppression is observed

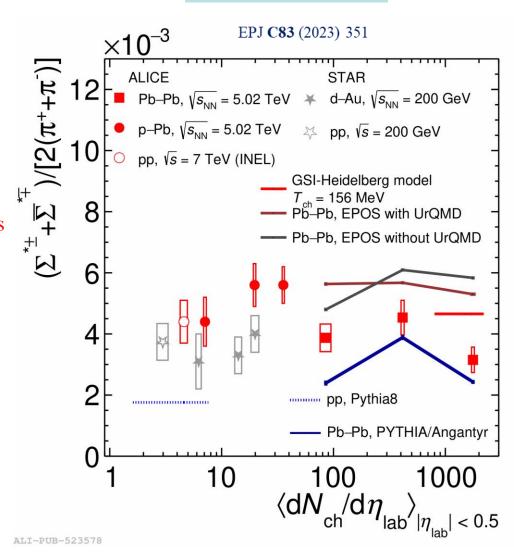
$\tau(\Lambda^*) = 12.6 \text{ fm/}c$

PCE: PRC102(2020)024909

THERMUS: Comput. Phys. Commun. 180 (2009) 84

GSI-Heidelberg: PL **B673** (2009) 142

SHARE3: Comput. Phys. Commun. 185 (20014) 2056

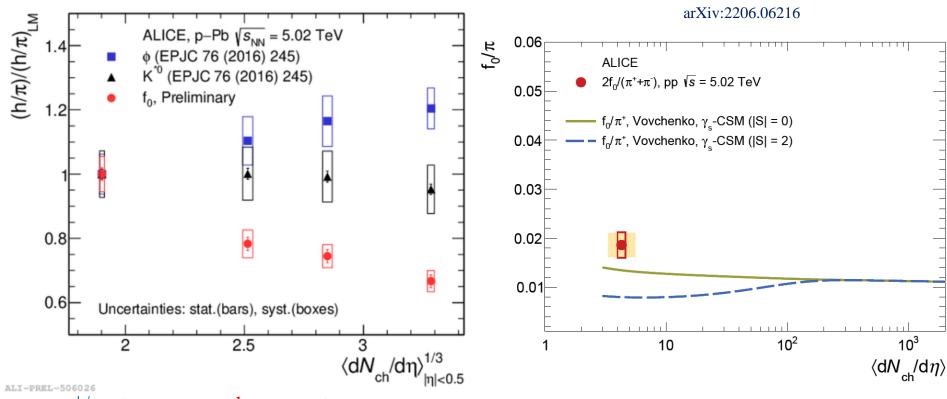

STAR data: PR C78 (2008) 044906

Σ^*/π vs. $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$

 $\tau(\Sigma^*) = 5-5.5 \text{ fm/}c$

Σ*/π: no particular trend with multiplicity
 is observed given the uncertainties
 hint of some suppression at
 the highest multiplicity
 → future higher precision measurements

- EPOS with UrQMD:
 - reproduce qualitatively
 - overestimates the data
- thermal model
 - overestimates the ratio in central Pb–Pb collisions
- pp/p-Pb: close to the STAR pp/d-Au data



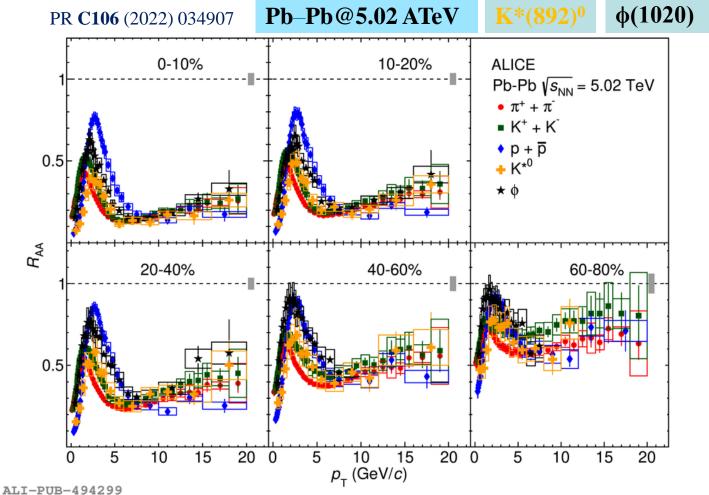
f_0/π vs. $dN_{ch}/d\eta$, vs. p_T

 $\tau(\mathbf{f}_0) = \sim 5 \text{ fm/}c$

quark structure of f_0 is still unknown.

possible configurations: qqbar, (qq)(qbar qbar), hadronic molecules, ...

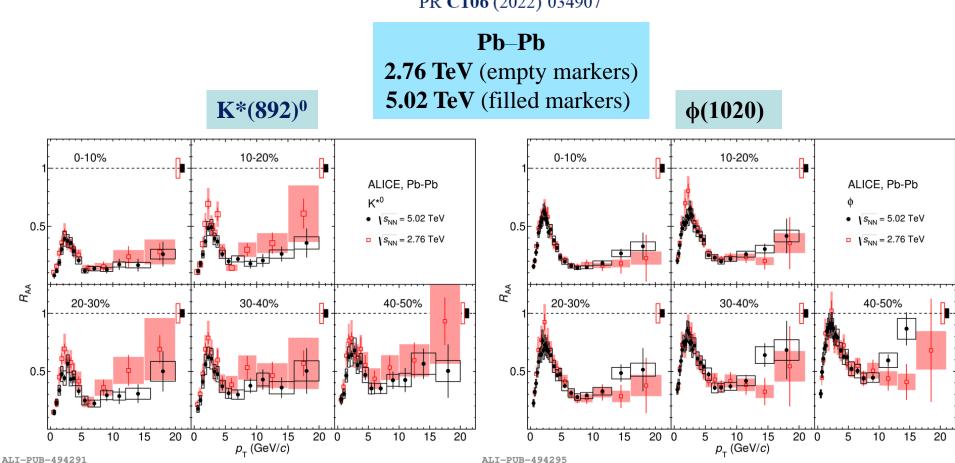
 ϕ/π : strangeness enhancement


 K^{*0}/π : competition strangeness enhancement and rescattering effect

 f_0/π : rescattering is the dominant effect

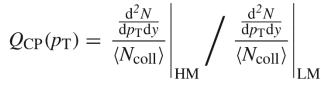
 γ_s -CSM prediction for the f₀(980) assuming net strangeness equal to zero is consistent with the data within 1.9 σ

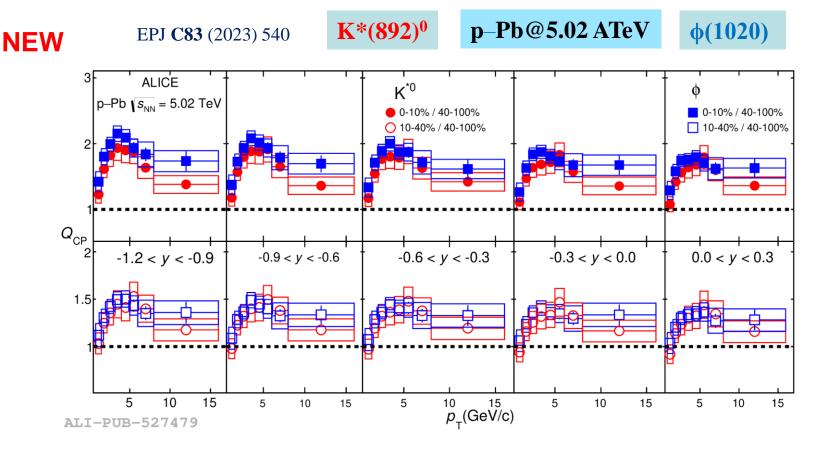
Nuclear modification factor R_{AA} – centrality dependence



strong suppression for the most central collisions behaviour similar to charged hadrons

NEW


$R_{\rm AA}$ – energy dependence


PR C106 (2022) 034907

no significant energy dependence

Nuclear modification factor $Q_{\rm CP}$ — multiplicity and rapidity dependence

- a bump, with a maximum around $p_T = 3 \text{ GeV/}c$, suggestive of the Cronin effect
- more pronounced for large negative rapidities (in the Pb-going direction) and for more central (higher multiplicity) collisions

Summary

Yields:

independent of collision system and energy appear to be driven by event multiplicity

Particle yield ratios (with previous results):

Pb-Pb: resonance suppression

resonance	$ ho^0$	K *	∑ *±	Λ*	Ξ *0	ф
lifetime (fm/c)	1.3	4.2	5-5.5	12.6	21.7	46.4
suppression	yes	yes	?	yes	no	no

qualitatively described by model with rescattering

```
pp, p–Pb: resonance suppression 
 K^* and f_0 – yes, \Lambda^* - no
```

 R_{AA} :

Pb–Pb: no significant energy dependence

 Q_{CP} :

p–Pb: Cronin-like enhancement is more pronounced for large negative rapidities (in the Pb-going direction) and for more central (higher multiplicity) collisions.