Contributions of QED diagrams with vacuum
polarization insertions to the lepton anomaly within
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Mpur uccnenyem pagumanuontabie KDJI-monpaBku K aHOMAJILHOMY MATHUTHOMY
MOMeHTY JienToHa (L = e, [ ¥ 7) OT JuarpaMm HOJISIPU3AIINA BaKyyMa 9e€ThIPbMsl
3aMKHYTBIMHU JICITOHHBIMU ITETJISIMMU. HO,ZLXOIL OCHOBBIBa€TCsd Ha II0CJIC10BaTEC/IbHOM
MPUMEHEHUN JTUCTIEPCHOHHBIX COOTHOIIEHW JIJTsT TOJISTPU3AIHOHHOTO OTIEPATOPa
u upeobpasoBanus Meymmna—Bapruca mja mporaraTropoB MacCUBHBIX HACTHII.
BriepBble TOSTy9eHBI TOYHBIE AHAJUTHYECKHE BBIPAYKEHUST I PaIUMaIiOHHBIX
IIOIIpaBOK K aHOMaJIbHBIM MarHUTHBIM MOMEHTaM JIEIITOHOB OT JguarpaMM
CO BCTaBKAMHU U3 YeTBhIpEX OJMHAKOBBIX JIEIITOHHBIX TeETeNlh, OOpa30BAHHBIMU
JICIITOHOM E, OTJIMYHBIM OT BHEIITHET'O L PeSy.HbTaT BbIpazKaeTCsd IYepe3 OTHOIIIEHNEe
JICIITOHHBIX MacCC 7" = m[/mL. I/ICC.HG,ZLyeTCH IIoBeJicHe TOYHBLIX aHaJUTUYICCKHX
BhIpakeHuit npu 1 — 0 U r — 0O U NPUBOJUTCS CPABHEHUE C COOTBETCTBYOIIIMMUI
ACUMIITOTUICCKUMU PA3JIOZKEHUAMMN, U3BECTHBIMU B JINTEPATYyPE.

We investigate the radiative QED corrections to the lepton (L = e, p and
7) anomalous magnetic moment arising from vacuum polarization diagrams by
four closed lepton loops. The method is based on the consecutive application of
dispersion relations for the polarization operator and the Mellin—-Barnes transform
for the propagators of massive particles. This allows one to obtain, for the first time,
exact analytical expressions for the radiative corrections to the anomalous magnetic
moments of leptons from diagrams with insertions of four identical lepton loops all
of the same type £ different from the external one, L. The result is expressed in
terms of the mass ratio r = my/mp. We investigate the behaviour of the exact
analytical expressions at » — 0 and 7 — oo and compare with the corresponding
asymptotic expansions known in the literature.
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Introduction

Among the most important consequences of the Dirac theory is the pre-
diction [1] that the gyromagnetic factor g, of a lepton L (L =e, p and 7) is
gr, = 2. However, the self-interaction with photons leads to a gyromagnetic
factor g # 2, which in the literature is referred to as the lepton anomaly,
ar, = (g1 —2)/2 # 0. Obviously, this anomaly is an important characteristic
of the magnetic field surrounding a lepton and, in spite of its extremely small
deviation from zero, it can serve as a substantial test of the Standard Model
(SM) or even can indicate the existence of some “new physics” beyond the
SM. Clearly, the self-energy correction to the lepton electromagnetic vertex
originates not only from the electromagnetic interaction but also from strong
and weak interactions. A comprehensive review of contributions of different
mechanisms to ay, can be found in, e.g., Refs. [2,3]. At present, experimen-
tal measurements of ay, for electrons [4,5] and muons |6, 7| are performed
with an extremely high accuracy which imposes appropriate requirements on
theoretical calculations.

The first theoretical calculation of the leading order correction was per-
formed long ago by J. S. Schwinger [8] who showed that a. = a/27, where «
is the fine structure constant. Next to the leading order corrections involve
much more diagrams which result in complicate and cumbersome calcula-
tions. Currently, calculations of the eighth- and tenth-order quantum elec-
trodynamic (QED) corrections to ar, which are important in reduction of
the theoretical uncertainties, are mainly performed numerically. The corre-
sponding calculations are rather computer resources consuming (and require
double checking, see, e. g., [9]) and a detailed study of the role of different
mechanisms contributing to a, are hindered. Therefore, it is enticing to find
at least a subset of specific Feynman diagrams which can provide analytical
expressions even if only for a restricted number of perturbative terms. Then,
having at hand analytical expressions, one can perform calculations with any
desired accuracy and, consequently, use as excellent tests of the reliability of
direct numerical procedures. It turns out that the subset of diagrams with
loops originating only from insertions of the photon polarization operator, the
so-called ‘bubble’-like diagrams, allows for analytical calculations of correc-
tions up to fairly high orders. As known the Mellin-Barnes representation
technique is widely used in multi-loop calculations in high-energy physics,
c.f. Refs. [10-13]. As a first formulation of the approach based on Mellin—
Barnes integral representation as applied to calculations the lepton anomaly,
one can mention Ref. [14], where the corrections to the muon anomaly of
the eighth and tenth order (w.r.t. the electromagnetic coupling constant e)
were calculated in analytical form as asymptotic expansions at mass ratio
r = my/my < 1. Further generalization of the approach to obtain exact
analytical expressions for arbitrary r ranging in the interval 0 < r < oo, was
reported in detail in Ref. [15]. This paper can be considered as a continua-
tion of our previous research [15] of the bubble-diagram contributions to ar,
using the Mellin-Barnes representation. Here we focus on the exact analyti-
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Fig. 1. Left panel: radiative corrections to the electromagnetic lepton vertex with
insertions of the vacuum polarisation operator with an arbitrary number of lep-
ton loops. Right panel: the second order diagram representing the set of graphs
depicted in the left panel as exchanges of one massive photon.

cal forms of the contributions to a; coming from diagrams with insertions of
four identical lepton loops.

Theoretical framework

The main idea of the approach is to apply the dispersion relations to the
corresponding Feynman diagram to express it via the Feynman x-paramet-
rization of the second-order diagram with massive photons and finally to
apply the Mellins—Barnes representation to the massive photon propagator
(see Fig. 1 as the illustration) and again the dispersion relations to the po-
larisation operators of the internal lepton ¢ # L different from the external
one. In this way, one can express any diagram from the mentioned subset in
a rather simple form as a comvolution integral of two Mellin momenta (for
details, cf. Ref. [15]). Then the QED corrections to the lepton anomalous
magnetic moment due to bubble-like Feynman diagrams with the insertion
of the photon polarization operator with an arbitrary number n = p + j of
loops, where p is the number of loops formed by leptons L of the same type
as the external one, j denotes the leptons ¢ # L, has the form

c+ioc0
L afyy 4m? o B a\P o\J '
oulpd) =252 [ ds () TEra=s) () ) (3) i)

where the factor F, ;) is related to the binomial coefficients C}, ; as F{, ;) =
(=1)PH+1CP, .. Explicitly, the Mellin momenta ,(s) and R;(s) read as

(2) (s = /Oldyc (1 — )~ [H(L) (—fxmi)r, (2)

() mer= 5 () mmo ®)

™ ™

Below we consider the case when p = 0 and j = 4 (see Fig. 2).
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Fig. 2. Vacuum polarization diagram with insertion of four identical lepton loops
formed by leptons other than the external one.
Contribution of the diagram with four identical lepton loops
Using Egs. (1) — (3), the contribution to the lepton anomaly from the
diagram shown in Fig. 2 can be written as
1 c+i00
a\d
)= (2) 5 [ rEFEs. ()

T/ 2w

c—100

where the integrand F(s) looks like
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For the sake of brevity the following notation has been introduced

Z1(s) = 1259712 + 9553325 — 4110912s% — 65587555 — 13845295  (6)
+ 38986175° 4 3867513s% + 165351057 + 3739445° + 435205 + 2048517,
Zy(s) = —8400 — 263405 — 221445% + 16415 + 11729s* + 68945° +

4 183555 + 2375" + 125°, (7)
Y(s)=s(s+1)*(s+2)*(3+5)(4+5)(5+5)(6+s)(1+2s)(3+2s)
X (5 + 2s)(7+ 2s). (8)

As the integrand (5) is singular, then the integral (4) can be carried out
by the Cauchy residue theorem closing the integration contour in the left
(r < 1) or right (r > 1) semiplanes of the Mellin complex variable s and
computing the corresponding residues in these domains.

Case r > 1. By closing the contour of integration to the right and com-
puting the corresponding residues in this domain, we get the following result:

ASOLE (1) = Do) + 2D () In(r) + Da(r) [Lig (%) oM (1 - r—12>

X 1n(7‘)] - % (87—7; 5 2”;T4> [Li2 (%) In(r) + Lis (%)] +3,(r)9)




where Li,, is the polylogarithm function of the order n and the polynomials
Dqy_5(r) are defined as follows
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Finally, the last term in Eq. (9) is the sum associated with sin®(7s) in
the denominator of the function F(s):

C

i (r) = 22 {%w}) + (n—1)Ce(n) (20 In(r) - wﬁ?)} vy (10

n=2

where

Ci(n) = (n+1)* (n+2) (635040000 + 7687008000n + 36734547600n>

4931258880400 + 135651027372n* + 104915891978n° + 10006706560n°
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Co(n) = Zy(s = n), Zy(s) and Y (s) are given by Egs. (7) and (8), respec-
tively; wfll’z) denotes the polygamma functions of the first or the second order
of the integer argument n.



Case r < 1. It should be noted that calculating the integral (4) in the
region r < 1 is much more difficult compared to the case » > 1. This is
due to the presence of additional zeros for the function Y (s), Eq. (8). Also,
for negative arguments, the polygamma function )" (s) also has poles for
integers s = —n. Having found all the residues and summed them up, we get

A7 (r < 1) = Po(r) + 2P(0) In(r) + 4Py (r) In® () + 8P (r) In*(r)

4L 198, . , 1 , 1
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where ®(r% n,1/2) is the Lerch function, which is related to the polylog-
arithms as: ®(r?,n,1/2) = 2"7'[Liy(r) — Lis(—r)]/r. The notation P;(r)
corresponds to the expressions
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where ((z) denotes the Euler-Riemann zeta function of the argument z.
Finally, the sum ¥5(r) in Eq. (12) reads as

So(r) = gnz {%iﬂﬁ) + (0 = 1) Za(—n) 207 n(r) + ) Y?—nn)’
(13)

where the notations are the same as in the sum (10). For brevity, polynomials
K;(r) in Eq. (12) are introduced
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Discussion

The above Egs. (9) and (12) represent the exact analytical expressions of
the tenth order of the radiative corrections from diagrams with the insertion
of four identical lepton loops, as depicted in Fig. 2. Despite their cumber-
someness, the explicit analytical form allows for numerical calculations with
any desired precision. The precision can only be limited by the knowledge of
the basic physical quantities such as «, m, and my,.

Let us briefly discuss asymptotic expansions of the coefficient Agl
considering the limits » << 1 and r > 1. A comparison of the result of
calculating ASO)’W using asymptotic and exact formulas, Egs. (9) and (12),
is illustrated in Fig. 3, in which the solid curve is the exact result, and the
dashed-dotted line is the asymptotic for r < 1 (left panel) and r > 1 (right

0),006¢
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Fig. 3. Comparison of asymptotic expansions with exact calculations of the coef-
ficient Agm) (r) The solid curve is the exact result, the dashed-dotted lines are the
asymptotic for r < 1 (left panel) and r > 1 (right panel).

panel). Note, we do not give here our expansion formula for the case r < 1
(see discussion below). For the case r > 1, using Eq. (9), we get

Agm),em(r > 1)

369904 n 4402 (3) L (598587203
88409475 = 109147 r 82751268600

71960 1 1
1277025756(3)) 76 T O (ﬁ) - (14)
It is interesting to note that there are no logarithmic terms in this expration.

One can see from Fig. 3 that the approximate expansions practically
coincide with the exact formulae in quite large intervals of r, namely 0 < r <
0.2 for the expansion r < 1 (left panel) and 2 < r < oo for the expansion
r > 1 (right panel), herewith both intervals include all the corresponding
physical values of af*.

Let us return to the region r < 1 for which there are asymptotic ex-
pansions in the literature, see Refs. [14,16]. Our asymptotic expansion com-
pletely coincides with the expansion given in Ref. [16], which, however, cor-
responds only to the order O(r?). In the expansion Ref. [14], see Eq. (A9) in
the Appendix, which is given up to the order O(r°), we found two misprint:
a different sign in the term 22r?In*(r) and in —872¢(5)r* instead of 61 there
is the number 64.

Thus, the present investigation has confirmed that the approach used here
is a powerful tool for finding exact analytical expressions for the bubble-like
diagrams contributions to the anomalous magnetic moment of leptons.
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