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Motivation & Goals

Search  for signatures of a phase transition in nuclear matter

produced in heavy ion collisions at high energies.

Systematic analysis of  inclusive cross sections of particle production  

in p+p, p+A and A+A collisions to search for general features of 

hadron and nucleus structure, constituent interaction and 

fragmentation process over a wide scale range.

Development of z-scaling approach for description of processes 

with unpolarized and polarized particle production in inclusive reactions 

and verification of fundamental physical principles of 

self-similarity, locality, fractality, maximal entropy, etc.

z-Scaling is a tool in high energy physics

Phys. Part. Nucl. 54, 640 (2023)
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Principles & Symmetries

"Fundamental symmetry principles dictate the basic laws 

of physics, control the structure of matter and  define the

fundamental forces in nature." 

Leon M. Lederman

“…for every conservation law there must be a continuous  symmetry....” 

Emmy Nöether

4

The concepts of symmetry, of invariance, play a very 

large role and, it appears, an increasing role in physics. 

Eugene P. Wigner

“Scaling” and “Universality” are concepts developed 

to understanding  critical phenomena. 

Harry E. Stanley, Grigory I. Barenblatt,…
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➢ Principles are reflected as regularities in measurable observables and

can be usually expressed as scaling in a suitable representation of data.
➢ z-Scaling of differential cross sections of inclusive particle production 

in p+p, p+A and A+A is used as a tool to search for and study of principles
and symmetries that reflect properties of hadron interactions at constituent level. 

➢ z-Scaling is based on the principles of self-similarity, fractality, and locality. 

Discrete (C,P,T,..) and continuous symmetries correspond to fundamental

principles (gauge, special, general and scale relativity, …)  and conservation

laws (charge,…. ) and vice versa.

5Principles & Symmetries

… Scaling means that systems near the critical points exhibiting self-similar

properties are invariant under transformation of a scale. According to

universality, quite different systems behave in a remarkably similar fashion

near the respective critical points. Critical exponents are defined only by

symmetry of interactions and dimension of the space.
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➢ A self-similar object is exactly or approximately similar to a part 

of itself (i.e. the whole has the same shape as one or more of the parts). 

➢ Self-similarity is a typical property of fractals. 

➢ Scale invariance is an exact form of self-similarity where at any 

magnification there is a smaller piece of the object that is similar

to the whole. 

Reynolds number                   Mach number                       Bjorken variable

Re= ρVD/η Ma=v/c    x = –q2/2(pq)    

Self-similarity 

Violation of a scaling  is an indication of new phenomena

laminar & turbulent flow

shock wave,       explosion,     confinement

subsonic & supersonic wave low x  & high x

Description of a process in terms of 
a scaling function and similarity parameter 

6
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➢ Self-similarity as a symmetry principle is confirmed.    

➢ The law of corresponding states, equation of state are found.

➢ Phase diagram – boundaries, triple and critical points,…, is established. 

➢ Properties of phases are investigated.   

Ice III

Ice XIII

Ice VI

➢ Phases (ice I-XVIII, liquid, vapor)
➢ Phase boundaries
➢ Phase transitions
➢ Triple Point (17)
➢ Critical Point (1)

What one can say about phase diagram of nuclear matter ?

The phase diagram of water H2O 7
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Specific heat of liquid 4He
 Superfluid transition

Heat capacity of  Ar

H.E. Stanley, 1971

KTC 19.5=
Critical Point

Singularity of specific heat near a Critical Point

Critical exponents define the behavior 
of thermodynamic quantities nearby the Critical Point.

Vc | |−  c cε (T-T )/T 2 2

V Vc T( F T )|/= −  

M. J. Buckingham and W. M. Fairbank, 1961 

The isochoric heat capacity Cv

of argon becomes infinite 

at the vapor-liquid critical point. 

A.V. Voronel’ et al. 
Zh. Exp. Teor. Fiz. 43, 728 (1962). 

150.8CT K=

Critical Point

➢ Near a critical point the singular part of thermodynamic 

potentials is a Generalized Homogeneous Function (GHF).

➢ The Helmholtz potential                                          is GHF of         .( , ) ( , )Va a
F V F V    = ( , )V

V Vc T S T|/=  

8
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Singularity of specific heat cp of liquid  4He in cosmic space 

J. A. Lipa  et al., 

“Specific heat of liquid helium  in zero gravity very near the lambda point”

Phys. Rev. B 68, 174518,  (2003)

Critical exponent describing the 

specific-heat singularity was found 

to be α = -0.01276 ±0.0003.

The experiment was performed in 

Earth orbit to reduce the rounding of 

the transition caused by gravitationally 

induced pressure gradients on Earth. 

In space, the lambda transition is expected

to be sharp to |t|<10-12 in ideal conditions.

Expt. in space |t|<10-10 (4He , Lipa).

Expt. on Earth |t|<10-7  (4He , Fairbank).

Expt. on Earth  |t|<10-4 (Xe, Sengers, ).

Specific heat  

Specific heat and thermal conductivity vs. 

reduced temperature near the lambda point | |p

A
c t B




− = +

Thermal conductivity  

➢ Density gradients cause substantial distortion

of the singularity for reduced temperatures.

➢ Transition broadening associated with 

gravity and relaxation  phenomena.

T T
t

T





−
=
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➢ Critical phenomena reveal unusual characteristic behavior of substances in the vicinity 

of phase transition points. 

➢ They are observed due to an increase in the characteristic sizes of different  fluctuations. 

➢ In these phenomena, the self-similarity of a system arises spontaneously.

➢ This scale property is characteristic of fractal structures.

➢ Second order transition is accompanied by a spontaneous symmetry breaking.

These anomalies are described by power laws with critical indices. 
Strong fluctuations and infinite correlation radii 

in such systems confirm self-similarity. 

Phase transitions & Critical phenomena

Signatures of critical phenomena: 
➢ increase in compressibility (liquid-vapor equilibrium) 

➢ increase in magnetic and dielectric susceptibility in the vicinity of the Curie points 

of ferromagnets and ferroelectrics 

➢ anomaly in heat capacity at the point of transition of helium to the superfluid state 

➢ slowing of the mutual diffusion of substances near the critical points of mixtures of 

stratifying liquids

➢ anomaly in the propagation of ultrasound (absorption of sound and an increase in its 

dispersion) 

➢ anomalies in viscosity, thermal conductivity, slowdown in the establishment of thermal 

equilibrium, etc. 

10
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z-Scaling:

hypothesis, ideas, definitions,… 

Basic principles:

locality, self-similarity, fractality,…

11

Int.J.Mod.Phys. A 27 (2012) 1250115

J.Mod.Phys. 3  (2012) 815

Int.J.Mod.Phys. A 32 (2017) 750029

Phys. Part. Nucl. 51 (2020) 141 

Nucl.Phys. A 993 (2020) 121646

Nucl.Phys. A 1025 (2022) 122492
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z-Scaling

Locality:  collisions of hadrons and nuclei are expressed 

via interactions of their constituents

(partons, quarks and gluons,...).

Self-similarity: interactions of the constituents 

are mutually similar. 

Fractality: self-similarity is valid over a wide scale range. 

Scaled inclusive cross section of particles depends

in a self-similar way on a single scaling variable z. 
Ed3σ/dp3

x1,x2,ya,yb

Ψ(z)

s1/2, pT, θcms
δ1,δ2,εa,εb ,c

Principles: locality, self-similarity, fractality

Hypothesis of z-scaling :

Inclusive particle distributions can be described 

in terms of constituent sub-processes and parameters 

characterizing bulk properties of the system.

12
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(x1P1+x2P2 –p/ya)
2 = MX

2

Momentum conservation law for sub-process 

Locality  

Mass of recoil system

MX= x1M1+x2M2+m2/yb

Collisions of colliding objects 
are expressed via interactions of their constituents

inclusive
particle

colliding
object

recoil
particle

colliding
object

P1, P2 , p – momenta of colliding 
and produced particles 

M1, M2 , m1 – masses of colliding 
and produced particles 

x1, x2 – momentum fractions of 
colliding particles carried by 
constituents

ya, yb – momentum fractions of 
scattered constituents carried by 
inclusive particle and its recoil

δ1, δ2 – fractal dimensions of 
colliding particles 

εa, εb – fractal dimensions 

of scattered  constituents 

(fragmentation dimensions)

m2 – mass of recoil particle

M.Tokarev, I.Zborovský

Yu.Panebratsev, G.Skoro

Phys.Rev.D54 5548 (1996)

Int.J.Mod.Phys.A16 1281 (2001)

Elementary sub-process:

(x1M1) + (x2M2 ) → (m1/ya )+ (x1M1+x2M2+ m2/yb )

13
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Self-similarity

N0ch

1/2

0
m)| η/d(dN

s
z c

⊥=

1

0z −= z

➢ Ω-1 – the minimal resolution at which a constituent sub-process

can be singled out of  the inclusive reaction

➢ – the transverse kinetic energy of the sub-process

consumed on production of m1 & m2

➢ dNch /dη|0 – the multiplicity density of charged particles at η = 0

➢ c – a parameter interpreted as a “specific heat” of created medium    

➢ mN an arbitrary constant  (fixed at the value of nucleon mass)

1/2s⊥

Interactions  of constituents are mutually similar 

The self-similarity parameter z is a dimensionless quantity, expressed through 

the dimensional values P1, P2, p, M1, M2, m1, m2, characterizing the process 

of inclusive  particle  production

14
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Fractality

ba21 ε

b

ε

a

δ

2

δ

1 )y-(1)y-(1)x-(1)x-(1=

-1 (x1, x2 , ya, yb )  characterizes resolution at which a constituent sub-
process can be singled out of the inclusive reaction

1, 2, a, b – parameters characterizing structure of the colliding
objects and fragmentation process, respectively  

Ω – relative number of configurations containing

a sub-process with fractions x1, x2 , ya, yb of the    

corresponding 4-momenta

→
→−1|) (z

The fractal measure z diverges as the resolution -1 increases.

1

0 Ωzz −=

Self-similarity over a wide scale range 

Fractal measure

1x,x0 21  1y,y0 ba 

15
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Momentum fractions   x1, x2, ya, yb

Principle of minimal resolution:  The momentum fractions  x1, x2 

and ya, yb are determined in a way to minimize the resolution 

Ω-1  of  the fractal measure z with respect to all constituent  

sub-processes taking into account 4-momentum conservation law:

0|y /           

0|x /           

0|x /           

)y,x,(xyyb

)y,x,(xyy2

)y,x,(xyy1

b21aa

b21aa

b21aa

=

=

=

=

=

=

ba -ε

b

-ε

a
2-δ

2
1-δ

1

-1 )y(1)y(1)x(1)x-(1 Ω −−−=

(x1P1+x2P2 –p/ya)
2 = MX

2

Momentum conservation law

Mass of recoil system 
MX= x1M1+x2M2+m2/yb

Fractions  x1, x2 ,ya, yb are expressed via 

Lorentz invariants – scalar products of

4-D momenta and particle masses.

Resolution of sub-process

16
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3
1

3

inel

π d σ
Ψ (z) J E

(dN/d η ) σ dp

−=  





=
0

1(z)dz

The scaling function  Ψ(z)  is  probability  density to produce  
the inclusive  particle with the corresponding  z.

= ⊥ Nσ pdyd
dp

σd
E inel

2

3

3

Scaling function  Ψ(z)

➢ inel – the inelastic cross section

➢ <N> – the average multiplicity 

➢ dN/d – the multiplicity density 

➢ J(z,;pT
2,y) – the Jacobian

➢ Ed3/dp3 – the inclusive cross section

Normalization condition

zαz F→ Ψ(z)αΨ(z) -1

F→

Scale transformation 

preserves the normalization condition

17
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Properties of  Ψ(z) in pp collisions

➢ Energy independence of Ψ(z) (s1/2 > 20 GeV)

➢ Angular independence of Ψ(z) (cms=30-900)

➢ Multiplicity independence of Ψ(z) (dNch/d=1.5-26)

➢ Saturation of Ψ(z) at low z (z < 0.1)

➢ Power law, Ψ (z) ~z-β, at high z (z > 4)

➢ Flavor independence of Ψ(z) (π,K,φ,Λ,..,D,J/ψ,B,,…, top)

These properties reflect self-similarity, locality, and fractality

of  hadron interactions at a constituent level. 

It concerns the structure of the colliding objects, 

constituent interactions  and fragmentation process.  

18
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19

Some results of data analysis 

for p+p collisions in z-scaling approach

Int. J. Mod. Phys. A 32, 1750029 (2017)

Phys. Part. Nucl. 51, 141 (2020)

p-p & 200 GeV 

RHIC & STAR
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Universality: flavor independence of the scaling function   

M.T.& I.Zborovský

Int. J. Mod. Phys.

A24,1417(2009) 

A32,1750029 (2017) 

STAR:

PRL 92 (2004) 092301

PRL 97 (2006) 132301

PLB 612 (2005) 181

PRC 71 (2005) 064902

PRC 75 (2007) 064901

PRL 108 (2012) 072302

PHENIX:

PRC 75 (2007) 051902

PRD 83 (2011) 052004

PRC 90 (2014) 054905

➢ Energy independence 

➢ Angular independence 

➢ Flavor independence 

➢ Saturation for z < 0.1 

➢ Power law Ψ(z)z - at large z

➢ F, F  independent of pT,  s1/2

Self-similarity of strangeness production in p+p

1α0.2,ε ππ ==

Solid line for  π− meson  
is a reference frame 

KS , K
-
, K*, , Λ, , Ω, Σ*, Λ*

0

“Collapse” of data points onto a single curve

20
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Self-similarity of strangeness production in p+p

Momentum fraction Recoil mass Energy loss   ΔE/E~(1-ya)

Constituent sub-process in terms of 

KS , K
-
, K*, , Λ, , Ω, Σ*, Λ*

0

The more strangeness, 
the larger energy loss  

The more strangeness, 
the larger recoil mass

The more strangeness, 
the larger momentum fraction 

KΣΞΩ εεεε K

X

Σ

X

Ξ

X

Ω

X MMMM 
K

1

Σ

1

Ξ

1

Ω

1 xxxx 

Self-similarity dictates  the properties of constituent sub-process.

Smooth behavior of x1 , ya , MX   vs. pT . 

21
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Model parameters:  δ, εF , c  for p+p

δ F

➢ δ, εF , c  are  independent of √s, pT

➢ εF depends on flavor       

Parameters  δ, εF , c are found  from  

the scaling behavior of  Ψ as a function of self-similarity variable z

c
Fragmentation dimensionProton fractal dimension “Specific heat”

➢ Self-similarity of proton sub-structure: δ = const 

➢ Self-similarity of hadronization process: εF = const for F=const

➢ Constancy of “temperature” fluctuations: c = const

Xhpp +→+Xhpp +→+Xhpp +→+ Xhpp +→+

~5%
~10%

~20%

~10%

(F)

22
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Some results of data analysis 

for A+A collisions in z-scaling approach

Nucl. Phys. A993 (2020) 121646

Nucl. Phys. A1025 (2022) 122492

Central Au-Au & 200 GeV 

RHIC & STAR
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Self-similarity of h─ production in Au+Au collisions

1

0zz −=

Self-similarity parameter

➢ dNch/d|0 - multiplicity density

➢ cAA - “specific heat” of  bulk matter

➢ A - nucleus fractal dimension

➢ AA - fragmentation  dimension 

3
1 2 -1

3

in

π A A d σ
Ψ(z)= J E

(dN/dη ) σ d p

➢ Energy independence of  (z) 

➢ Centrality independence of  (z)   

➢ Dependence of AA on multiplicity

➢ Power law at low- and high-z regions

AA collisions:  

“Collapse” of data points onto a single curve

Indication of the decrease   

of  for  √sNN < 19.6 GeV

STAR  
preliminary

A A = 
AA

AA 0 neg pp2dN d( / ) =   + 

1/2

0

ch 0 N
AA

c
s

z
(dN /d  | ) m

⊥=

AA AA AA
δδ ε ε

1 2 a b(1 x ) (1 x ) (1 y ) (1 y ) = − − − −

24

MT & I.Zborovsky,  Nucl. Phys. A993 (2020) 121646
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Scaling function,  momentum fractions and recoil mass
vs. centrality and pT at √sNN = 7.7 GeV & |η|<0.5

Au+Au→h
–
+X  

➢ Scaling behavior of  Ψ(z)

➢ Weak dependence of Ax1, ya , MX 

on centrality

➢ Cumulative region is reached

➢ Smooth dependence vs. variables

➢ Power behavior of Ψ(z)  at z<0.4

➢ Power behavior of Ψ(z)  at z>4

➢ Linear dependence of MX and Ax1

on pT for all centralities

➢ Growth and flattening of ya vs. pT

➢ Decrease of δA=Aδ with √sNN

There are no found discontinuities

in these dependences.

25
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Au+Au→h
–
+X

➢ Scaling behavior of  Ψ(z)

➢ Strong dependence of Ax1, ya , MX 

on centrality

➢ Cumulative region is not reached

➢ Smooth dependence vs. variables

➢ Power behavior of Ψ(z)  at z<0.4

➢ Power behavior of Ψ(z)  at z>4

➢ Growth of Ax1, ya , and MX

on pT for all centralities

➢ Independence of δA=Aδ on √sNN

Scaling function,  momentum fractions and recoil mass
vs. centrality and pT at √sNN = 39 GeV & |η|<0.5

There are no found discontinuities

in these dependences.

26
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Model parameters: δA, εAA, cAA

δAδA = AA 0 AA ppε =ε (dN /dη )+ε

Fragmentation dimensionNucleus fractal dimension

➢ δA decreases with energy for √sNN ≤ 20 GeV

➢ δA is independent of energy for √sNN ≥ 20 GeV

➢ εAA increases with energy      

➢ cAA is independent of energy  

Parameters  δA, εAA, cAA are determined from the requirement 

of scaling behavior  of  Ψ as a function of self-similarity parameter z

AAc

“Specific heat”

Search for discontinuity and correlations of the model parameters.

XhAuAu +→+ −

STAR  preliminary

stat.err.   ≤10%

XhAuAu +→+ −

STAR  preliminary STAR  preliminary

stat.err.   ≤10% stat.err.   ≤10%

XhAuAu +→+ −

27
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1

0zz −=

Self-similarity parameter

➢ dNch/d|0 - multiplicity density

➢ cAA - “specific heat” of  bulk matter

➢ A - nucleus fractal dimension

➢ AA - fragmentation  dimension 

3
-1

3

inel

π d σ
Ψ(z)= J E

(dN/dη ) σ d p

➢ Energy independence of  (z) 

➢ Centrality independence of  (z)   

➢ Dependence of AA on multiplicity

➢ Power law at low- and high-z regions 

AA collisions:  

“Collapse” of data points onto a single curve

Indication of a decrease   

of  for  √sNN < 19.6 GeV

A A = 

Self-similarity of  KS production in Au+Au0

1/2

0

ch 0 N
AA

c
s

z
(dN /d  | ) m

⊥=

AA AA AA
δδ ε ε

1 2 a b(1 x ) (1 x ) (1 y ) (1 y ) = − − − −

AA

AA 0 neg pp2dN d( / ) =   + 

MT & I.Zborovsky,  Nucl. Phys. A1025 (2022) 122492
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Momentum fraction Ax1
Recoil mass MX Energy loss   ΔE/E~(1-ya)

Energy loss 
➢ decreases with pT

➢ increases with √sNN

Recoil mass 
➢ increases  with pT

➢ increases with √sNN

Momentum fraction 
➢ increases  with pT

➢ decreases with √sNN

➢ High x1 and pT → compressed nuclear matter

➢ Large MX  → high density recoil system 

➢ High ya →  small energy loss 

KS production in central Au+Au @ 7.7-200 GeV 0

Constituent sub-process in terms of 

Smooth behavior of x1 , ya , MX   vs. pT , centrality, collision energy

29
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Model parameters:  δA, εAA , cAA for Au+Au

➢ δA, εAA , cAA depend on  √sNN

➢ εAA depends on flavor and multiplicity       

Parameters  δA, εAA , cAA are found  from  

the scaling behavior of  Ψ as a function of self-similarity variable z

Fragmentation dimensionNucleus fractal dimension “Specific heat”

Decrease of resolution with energy :  δ = 0 for point-like object.

Increases of energy loss vs. energy, multiplicity : ε AA = 0 no energy loss

Increase of temperature fluctuations with energy : decrease of specific heat  cAA

Strange meson KS
0 is a sensitive probe to state of the nuclear matter.

Aδ =A δ AAcAA

AA 0 neg pp2dN d( / ) =   + 

30
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Fractal entropy Sδ,ε for systems 

with structural constituents  

Physics 5 (2023) 537

31
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According to statistical physics, entropy of a system is given by a number Ws

of its statistical states:

The most likely configuration of the system is given by the maximal value of  S. 

For inclusive reactions, the quantity Ws is the number of all parton and hadron

configurations in the initial and final states of the colliding system which 

can contribute to the production of inclusive particle with momentum p. 

The configurations comprise all constituent configurations that are mutually 

connected by independent binary subprocesses: 

The subprocesses corresponding to the production of the inclusive particle with 

the 4-momentum p are subject to the momentum conservation law: 

The underlying subprocess, which defines the variable z, is singled out from the 

corresponding subprocesses by the principle of maximal entropy S.

1 1 2 2 a a 1 1 2 2 b b(x M )+(x M ) (m /y )+(x M +x M +m /y )→

2 2

1 1 2 2 a 1 1 2 2 b b(x P +x P -p/y ) =(x M +x M +m /y )

Entropy of nuclear system produced in A+A → h+X

SS= lnW

32
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Self-similarity variable z & Fractal entropy Sδ,ε

Sln WS =

Statistical entropy

Thermodynamical entropy 

for ideal gas

1 2

, ch 1 2 a b 00
c ln (dN /d ) ln[(1 x ) (1 x ) (1 y ) (1 y ) ]  lnWa bS

  

  =  + − − − − +

1

0zz −=

, ch , 00
c ln (dN /d ) +ln (V ) lnWS   =  +

Fractal entropy for 

independent processes

Entropy Sδ,ε for systems with structural constituents 

а b1 2 ε εδ δ

1 2 а bΩ = (1-x ) (1-x ) (1-y ) (1-y )

➢ dNch/dη|0 characterizes “temperature” of the colliding system. 
➢ c has meaning of  a “specific heat” of the produced medium.
➢ Fractional exponents 1,2,a,b are fractal dimensions in the space of {x1,x2,ya,yb}.
➢ Vδ,ε = Ω is fractal volume in the space of momentum fraction.

The quantity WS is the number of all parton and 

hadron configurations in the initial and final states 

of the colliding system which can contribute to the 

production of inclusive particle with  momentum p

0

ch 0 N

c

s
z

(dN /dη | ) m

⊥=

V 0c lnT+RlnV+SS =

s
z

W

⊥= S 0 ch 0 0

cW = W W = (dN /dη | ) W  

33
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Fractal entropy Sδ,ε and momentum fractions x1, x2, ya, yb

Principle of maximal entropy:  The momentum fractions  x1, x2  and ya, yb are

determined in a way to maximize the entropy Sδ,ε with respect to all constituent 

sub-processes taking into account  4-momentum conservation law.

a a 1 2 b

a a 1 2 b

a a 1 2 b

, 1 y y (x ,x ,y )

, 2 y y (x ,x ,y )

, b y y (x ,x ,y )

            / x | 0

            / x | 0

            / y | 0

S

S

S

 

 

 

=

=

=

  =

  =

  =

(x1P1+x2P2 –p/ya)
2 = MX

2

Momentum conservation law

Mass of the recoil system 
MX= x1M1+x2M2+m2/yb

Fractions  x1, x2 ,ya, yb are expressed via 

Lorentz invariants – scalar products of

4-D momenta and particle masses.

, ch 1 2 a b 00

δ δ1 2c ln (dN /d ) ln[(1 x ) (1 x ) (1 y ) (1 y ) ]  Sa bS
 

  =  + − − − − +

Maximal entropy Sδ,ε  minimal resolution -1 of the fractal measure z.
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Principle of maximal entropy:

The momentum fractions  x1, x2 , ya, yb

are determined in a way to maximize the 

entropy Sδ,ε with a kinematic constraint

(momentum conservation law).

1 a

2 b

 / x 0  / y 0

 / x 0  / y 0

  =   =

  =   =

ba -ε

b

-ε

a
2-δ

2
1-δ

1

-1 )y(1)y(1)x(1)x-(1 Ω −−−=

(x1P1+x2P2 –p/ya)
2 = MX

2

Momentum conservation law

Mass of recoil system 

MX= x1M1+x2M2+m2/yb

Resolution w.r.t. constituent sub-processes

Maximum entropy principle  & New conservation law

Conservation law

for arbitrary !!!1 2 1 2 a bP ,P ,p,δ ,δ ,ε ,ε

Maximum of  Sδ,ε
a b1 2

1 2 a b

1 2 a b

y yx x
δ + δ = ε + ε

1- x 1- x 1- y 1- y

35

I.Zborovsky & MT 

Int. J. Mod. Phys. A 33, 1850057 (2018)

ICHEP 2020, Prague, July 28 –August 6

The conservation law

corresponds to maximum of 

fractal entropy Sδ,ε

Equivalence of minimal resolution  

and maximal entropy principle
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“The fractal cumulativity before a constituent interaction 

is equal to the fractal cumulativity after a constituent 

interaction for any binary constituent sub-process”

ζ
C(D,ζ) = D

1-ζ


D = (1, 2, a, b)

z = (x1, x2, ya, yb)

“Fractal cumulativity”

in out

i i j j

i j

C(D ,ζ ) = C(D ,ζ ) 

➢ every physical particle is a structural one
➢ particle’s constituents possess a fractal-like structure
➢ fragmentation is a fractal-like process 
➢ compactness of the fractal structures is governed  

by the  Heisenberg uncertainty principle

We assume that  

Fractal cumulativity C(D, z)  is a property of a fractal-like object 
(or fractal-like process) with fractal dimension D to form a local compact 

“structural aggregate” - a FRACTALON, which carries the fraction z 
of momentum of its parent fractal. 

36Conservation law for fractal cumulativity C(D, ζ)
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The notion of  “FRACTALON”  in z-scaling approach 

is  applied  for description of particle production 

in collisions of hadrons and nuclei 

at high energy and small scales.

“… the universality of fractal structure of spacetime at small and large scales areas…”

“…  a quantum mechanical particle (corpuscule) moving on fractal paths

may be one or a small cluster of stochastic elements constituting the particle... “

“  … fractalon is a free particle conned to move on the fractal trajectory”

BOHM & VIGIER: IDEAS AS A BASIS FOR A FRACTAL UNIVERSE

R.L. Amoroso et al (eds.), 

Gravitation and Cosmology:From the Hubble Radius to the Planck Scale, 85-94.

© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

C.Ciubotariu, V.Stancu & C.Ciubotariu

Gravitation and Cosmology:

From the Hubble Radius to the Planck Scale
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➢ is a smooth function of collision energy and pT

➢ decreases  as pT increases 
➢ increases with collision energy
➢ in central collisions is larger than 

in peripheral ones at low pT < 1 GeV/c  
➢ increases with multiplicity density dNch/dη|0
➢ decreases with increasing resolution -1.

1 2

, ch 1 2 a b 00
c ln (dN /d ) ln[(1 x ) (1 x ) (1 y ) (1 y ) ]  Sa bS

  

  =  + − − − − +

Fractal entropy Sδ,ε vs. √sNN, centrality, pT

Fractal entropy Sδ,ε
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Anomaly of Sδ,ε in the region √sNN = 11.5‒39 GeV at low pT

Fractal entropy Sδ,ε vs. √sNN, centrality, pT

➢ The entropy reaches a local maximum at the energy √sNN=11.5 -19.6 GeV and pT=0.3 GeV/c. 

➢ An abrupt fall of Sδ,ε is seen at √sNN=27 -39 GeV with a gradual increase at higher energies. 

➢ Anomalous behavior of Sδ,ε is also visible at pT=0.7 and 1.0 GeV/c in the same energy range. 

➢ Monotonic growth of Sδ,ε is observed for all pT in the peripheral collisions for all √sNN .

1 2

, ch 1 2 a b 00
c ln (dN /d ) ln[(1 x ) (1 x ) (1 y ) (1 y ) ]  Sa bS

  

  =  + − − − − +
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➢ Discontinuity or abrupt change of  the model parameters:  

“specific heat”- c, fractal dimensions – δ, ε

➢ Enhancement of  c-δ-ε correlations  

➢    Anomalous behavior of the fractal entropy Sδ,ε

➢ Energy loss is a contamination factor leading 

to smearing of the phase transition signatures 

40 Signatures of Phase Transition and Critical Point 40
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Summary

➢ Some results of  STAR data analysis on transverse momentum inclusive 

spectra of hadrons produced  in p+p and Au+Au collisions  at  RHIC

in the z-scaling approach were given.   

➢ Self-similarity of hadron production in p+p and Au+Au collisions  over a wide 
kinematic and centrality range was found.    

➢ Properties of data z-presentation and dependence of the model parameters -

fractal dimensions and “specific heat”,  on  collision energy and 

centrality were discussed. 

➢ Universality of  Ψ vs. z and smooth behavior of x1 , ya , MX vs.  pT ,  

centrality, and collision energy were observed. 

➢ Fractal entropy introduced in z-scaling approach was discussed. 

➢ Conservation law of fractal cumulativity was formulated.

➢ Anomaly of “specific heat”  cAA in the range √sNN = 11-39 GeV was found.

➢ Anomaly of fractal entropy Sδ,ε in the range √sNN= 27 -39 GeV was found.

➢ Signatures of phase transition and critical point of nuclear matter produced in 

heavy ion collisions were discussed.
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Thank  you  for  attention !
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