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Preambular Introduction-Scheme

Effective Potential Methods with masses

m2 in vertices
��

Vacuum Massless Integrations

Sequential ApproachGenerated func. → singular distrib.

��

δ(0) ≡ lim
ε→0

1/ε⇒ UV (IR)− divergencies
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Introduction

We present the important details regarding the vacuum massless
integrations which are not outlined in the literature. In particular, it has
been shown how the delta-function represents either UV-regime or
IR-regime.

In the case of vacuum massless integration, we advocate the use of
sequential approach to the singular generated functions (distributions).
The sequential approach is extremely useful for many practical
applications, in particular, in the effective potential method.
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In Dimensional Regularization

Due to the dimensional analysis, the vacuum massless integration gives∫
dDk
[k2]n

= 0 for ∀ n

However, if n = D/2 (the dim. analysis arguments do not work!) we can
check that the zero is achieved owing to the cancellation, each other, of
UV- and IR-divergencies.

Hence, focusing on the only UV(IR)-divergency we deal with the
non-zero contribution which is a object of our consideration.
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Singular Generated Functions (≡ Distributions as Functionals)

Every singular functional is being a limit of the regular functional, i.e.

δ(x) = lim
ε→0

δε(x) in the function space

⇒ lim
ε→0

∫
dµ(x)δε(x) in the functional space

where dµ(x) = dx φ(x) with the restricted (finite) function φ(x) and

δε(x) =
{1
π

ε

ε2 + x2 ;
1

2
√
πε

e−
x2
4ε ;

1
π

sin x/ε
x

}
x=0∼

{[1
ε

];
[ 1√

ε
];

[1
ε

]
}
⇒ parametrization of infinity if ε→ 0.

P.S. Here, x=0∼ means “behaves as” if x = 0.
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∆F (0)-singularity (tad-pole type of diagrams)

Using the Fourier transform, the propagator ∆F (0) can be write as (In what
follows +i0 is omitted in the denominators)

∆F (0) =

∫
(dDk)

k2 = Γ(D/2− 1)

∫
(dDz)

δ(z)(
z2
)D/2−1 ,

If we assume that D/2− 1 = 0, then

∆F (0) = Γ(0)

∫
(dDz) δ(z)⇒ Γ(0),

where

Γ(0) = lim
ε→0

Γ(ε) = lim
ε→0

{1
ε

+ ....
}
.

P.S. The condition given by D/2− 1 = 0 has to be applied before the integration over
(dDk) in order to avoid the uncertainty.
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On the other hand, see Gorishny-Isaev:1984, the vacuum integration results
in the delta-function.
A key moment of Gorishny-Isaev’s method goes as below. Using the
spherical system, ∆F (0) can be represented as

∆F (0) =

∫
(dDk)

k2 =
1
2

∫
dΩ

∫ ∞
0

dβ βD/2−2.

The replacement β = ey leads to the following expression

∆F (0) =
1
2

∫
dΩ

∫ ∞
−∞

(dy) eiy
[

(−i)(D/2−1)
]

=
1

2 |i |
δ
(
D/2− 1

) ∫
dΩ

or, restoring all coefficients, it reads

∆F (0) = −2i π1+D/2 δ(1− D/2)
∣∣∣
D=2

= −2i π2 δ(0).
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So, for the case of D = 2, the matching gives the following representation

(−i) ∆F (0) = Γ(0) = −2π2 δ(0).

With this, we may conclude that δ(0)-singularity can be treated as the
singularity of Γ(0). The same inference has been reached by the different
method, see Anikin:2020. Notice that the physical (UV or IR) nature of the
mentioned singularity has been somewhat hidden.
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UV-divergency vs. IR-divergency

In the dimensional regularization, the remaining UV- and IR-divergencies are
associated with the (small) positive (ε > 0) and negative (ε < 0) regularized
parameter ε, respectively. In α-parametrization, we have

∆F (0) =

∫
(dDk)

k2 = Γ(D/2− 1)

∫
(dDz)

δ(z)(
z2
)D/2−1

=

∫
(dDz) δ(z)

{∫ ∞
0

dααD/2−2 e−αz2
}

=

∫ ∞
0

(dα)αD/2−2.
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Hence, one gets

∆F (0) =

∫
(dDk)

k2 =

∫ ∞
0

(dα)αD/2−2 =⇒

1
D/2− 1

{
lim
α→∞

αD/2−1 − lim
α→0

αD/2−1
}
.

One can see that the first term corresponds to the UV-divergency, while the
second term – to the IR-divergency:

lim
α→∞

αD/2−1 = [∞]UV if D > 2,

lim
α→0

αD/2−1 = [∞]IR if D < 2.
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In other words, if ε in D = d − 2ε is small one, |ε| < 1, and it varies from the
negative to positive variables, we have

∆F (0)
∣∣∣
d=2

stand.
=⇒ 1

D/2− 1

{
Θ(D > 2 | ε < 0) lim

α→∞
αD/2−1

− Θ(D < 2 | ε > 0) lim
α→0

αD/2−1
}

= 0

G-Is
=⇒ δ

(
1− D/2

)∣∣∣
D 6=2

= 0.

Thus, every of the methods gives the same final conclusion !

P.S. In the dimensional regularization, the positive small ε is regularizing the
UV-divergency but not IR-divergency.
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We remind the other useful representation given by

∆F (0) = lim
z2→0

∆F (z2) = lim
z2→0

1
4π
δ+(z2) = δ(0), z ∈ E4

which is in agreement with the above mentioned eqns.
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Vacuum integration as a limit of non-vacuum integration

In the dimensional regularization procedure, we begin with two-point 1PI
massless Green function given by

I(p2) =

∫
(dDk)

k2(k2 + p2)
= (c.c.) (p2)D/2−2 G(1,1),

where (c.c) implies the coefficient constant and

G(1,1) =
Γ(−D/2 + 2)Γ2(D/2− 1)

Γ(D − 2)
.

(See for example [Chetyrkin-Kataev-Tkachov:1980; Grozin:2005])
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Using D = 4− 2ε, we get

I(p2) =

∫
(dDk)

k2(k2 + p2)
= (c.c.) (p2)−ε

Γ(ε)Γ2(1− ε)
Γ(2− 2ε)

.

Here, the scale dependence of µ2 is hidden as irrelevant one.

The vacuum integration can be obtained from this eqn. with the help of the
corresponding limit as

V2 ≡
∫

(dDk)

(k2)2 = lim
p2→0

I(p2).
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There are, however, some subtleties of the mentioned limit.

Indeed, having used the α-representation, let us calculate the following
integral

I(p2) = (c.c.)
∫ ∞

0
dαdβ

e−p2 αβ
α+β

[α + β]D/2 = (c.c.)
∫ ∞

0
λλ1−D/2

∫ 1

0
dxe−p2λxx̄ ,

where

α = λx1, β = λx2, λ ∈ [0, ∞].

I.V. Anikin G-I’s vacuum Integration and UV 15 / 25



The next stage of calculations is to make a replacement as

λ̃ = p2λxx̄ , d λ̃ = p2xx̄dλ

in the exponential function. This replacement simplifies the integrals and it
leads to the corresponding combination of Γ-functions denoted as G(1,1)

Grozin:2005, Grozin:2007.
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On the math. subtleties

The first mathematical subtlety: if we suppose the limits p2 → 0 and
ε→ 0 are consequent ones, not simultaneous, that these limits are not
commutative operations, i.e.[

lim
p2→0

, lim
ε→0

]
6= 0.

P.S. On the other hand, if the limits are simultaneous ones we deal with the
uncertainty of [0]0 which should be somehow resolved.
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The second subtlety: to avoid the mentioned uncertainty, we have to
implement the limit p2 → 0 before the possible replacement. In this case,
the limit of p2 → 0 is well-defined operation and we finally obtain that

lim
p2→0

I(p2) = (c.c.)
∫ ∞

0
dλλ1−D/2 =

1
2− D/2

{
lim
λ→∞

λ2−D/2 − lim
λ→0

λ2−D/2
}

≡
∫

(dDk)

(k2)2 = V2.
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δ(0)-singularity (sequential approach)

Based on the dimensional analysis, we may conclude that

Vn =

∫
(dDk)

[k2]n
= 0 for n 6= D/2.

However, the case of n = D/2 (or n = 2 if ε→ 0) requires the special
consideration because the dimensional analysis argumentation does not now
work.

Nevertheless, the nullification of VD/2 takes still place but thanks to different
reasons. It turns out, the ultraviolet and infrared divergencies are cancelled
each other. Hence, if only the ultraviolet divergencies are under our
consideration, VD/2 is not equal to zero.
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To demonstrate, we dwell on the vacuum integration which is externally the
IR-regularized one. In the spherical co-ordinate system, we write the
following representation (µ2 plays a role of IR-regularization)

V2 =

∫
UV

(dDk)

[k2]2 ≡
πD/2

Γ(D/2)

∫ ∞
µ2

dββD/2−3 with β = |k |2,

Next, calculating β-integration, we reach the representation as

V2 =
π2−εµ−2ε

Γ(2− ε)

1
ε

∣∣∣
ε→0

,

where the ε-pole corresponds to the UV-divergency only (the IR-divergency is absent
by construction thanks for µ2) [Grozin:2005, Grozin:2007].
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On the other hand, we are able to calculate the vacuum integration by
Gorishny-Isaev’s method Gorishnii-Isaev:1984. In this case, Vn reads

Vn =

∫
(dDk)

[k2]n
=

2i π1+D/2

(−1)D/2 Γ(D/2)
δ(n − D/2).

Supposing D = 4− 2ε, the only contribution is given by

V2 =

∫
(dDk)

[k2]2
=

2i π3−ε

Γ(2− ε)
δ(ε) 6= 0.

Hence, the delta-function of argument ε reflects the UV-divergency. We
specially stress that the representations of V2 given by the above mentioned
eqns. are equivalent.
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The delta-function as a generated function (distribution) is a linear singular
functional (which cannot be generated by any locally-integrated functions)
defined on the suitable finite function space.
Also, the delta-function can be understood with the help of the fundamental
sequences of regular functionals provided the corresponding weak limit, see
for example Antosik:1973, Gelfand:1964. Besides, one of the delta-function
representations is related to the following realization

δ(t) = lim
ε→0

δε(t) ≡ lim
ε→0

St .F .(−ε ≤ t ≤ 0)

ε
,

where St .F .(−ε ≤ t ≤ 0) implies the well-known step-function without any
uncertainties.

One can see that the treatment of δ(ε) as the linear (singular) functional on
the finite function space with dµ(ε) = dεφ(ε) meets some difficulties within
the dimensional regularization approach. Indeed, for the practical use, ε is not
a convenient variable for the construction of the finite function space because
we finally need to be focused on the limit as ε→ 0.
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Meanwhile, within the sequential approach Antosik:1973, Gelfand:1964, the
delta-function might be considered as the usual singular (meromorphic)
function and the δ(0)-singularity/uncertainty can be treated as a pole of the
first order Anikin:2020,

δ(0) = lim
ε→0

δε(0) ≡ lim
ε→0

1
ε
.

P.S. For the demanding mathematician, this representation should be understood
merely as a symbol. That is, δ(0) denotes alternatively the limit of 1/ε. This
representation is also backed by the obvious fact that the mentioned eqns. are
equivalent ones.
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It is worth to notice that representation of δ(0) through the pole of an arbitrary
meromorphic function should be used very carefully. For example, if we
suppose that (here, z ∈ E4 and the delta-function is assumed to be a
functional on the finite function space)[

δ(z)
]2

= δ(0) δ(z),

the representation given by

δ(z) = lim
ε→0

δε(z), δε(z) =
1

π2ε4
e−z2/ε2

⇒ δ(0) ∼ δε(0) =
1

π2ε4

does not satisfy the necessary condition. Another informative example can be
found in Efimov:1973.
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Conclusion

To conclude, we have presented the important explanations regarding the
massless vacuum integrations. In the note, we have demonstrated the
preponderance of sequential approach where the singular generated
functions (distributions) are treated as a fundamental sequences of regular
functionals. Due to this treatment, the uncertainty as δ(0) can be resolved via
the meromorphic function of first order. Also, it has been shown in detail how
the delta-function represents either UV-regime or IR-regime.
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