Performance study of the anisotropic flow measurements of identified charged hadrons with fixed-target mode of the MPD experiment at NICA

P. Parfenov^{1,2}, M. Mamaev^{1,2}, A. Taranenko^{1,3} for the MPD Collaboration ¹NRNU MEPhI ²INR RAS ³BLTP JINR

XXV International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics"

18-23 September 2023, Dubna, Russia

This work is supported by:

the RSF grant 22-12-00132, the Ministry of Science and Higher Education of the Russian Federation, Project "Fundamental properties of elementary particles and cosmology" No. 0723-2020-0041

Sensitivity of the collective flow to the EOS

Azimuthal distribution of produced particles with respect to RP:

$$ho(arphi-\Psi_{RP})=rac{1}{2\pi}(1+2\sum_{n=1}^\infty v_n\cos n(arphi-\Psi_{RP}))$$

Coefficients of the decomposition are referred to as collective flow

$$v_n = \langle \cos \left[n (arphi - \Psi_{RP})
ight]
angle$$

 v_1 is called directed and v_2 is called elliptic flow

Collective flow is sensitive to:

- Compressibility of the created in the collision matter ($t_{exp} = R/c_s$, $c_s = c\sqrt{dp/d\varepsilon}$)
- Time of the interaction between the matter within the overlap region and spectators $(t_{pass} = 2R/\gamma_{CM}\beta_{CM})$

Interpretation of the previous flow data

P. DANIELEWICZ, R. LACEY, W. LYNCH 10.1126/science.1078070

- The flow data from E895 experiment have ambiguous interpretation: v₁ suggests soft EOS while v₂ corresponds to hard EOS
- Additional measurements are essential to clarify the previous measurements

Selecting the model

MPD in Fixed-Target Mode (FXT)

- Model used: UrQMD mean-field
 Bi+Bi, E_{kin}=1.45 AGeV
 - Point-like target
- GEANT4 transport
- Particle species selection via true-PDG code of the associated MC particle

The BM@N experiment (GEANT4 simulation for RUN8)

Square-like tracking system within the magnetic field deflecting particles along X-axis

Charge splitting on the surface of the FHCal is observed due to magnetic field

BM@N vs MPD: p_T-y acceptance

BM@N vs MPD: η - ϕ acceptance

BM@N

- MPD has more uniform acceptance along φ -axis
- BM@N has non-uniform acceptance due to square-like shape of the tracking system

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$

where $\boldsymbol{\phi}$ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 $\Psi_n{}^{\text{EP}}$ is the event plane angle

Modules of FHCal divided into 3 groups

Additional subevents from tracks not pointing at FHCal: Tp: p; -1.0<y<-0.6; Tπ: π-; -1.5<y<-0.2;

Scalar Product method using FHCal symmetry plane

Tested in HADES: M Mamaev et al 2020 PPNuclei 53, 277-281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

Where R₁ is the resolution correction factor: $R_1^{F1} = \langle \cos(\Psi_1^{F1} - \Psi_1^{RP})
angle$

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Good agreement between R₁ calculated using different combinations of Q-vectors with significant rapidity separation

BM@N vs MPD: v_1 vs y for protons

Summary

- The feasibility study for the flow measurements in the MPD experiment in a fixed-target mode was carried out with GEANT4 detector simulation and UrQMD Bi+Bi@1.45A GeV events as an input
- Acceptances of the BM@N and MPD facilities were compared:
 - MPD has greater coverage of the backward rapidities and midrapidity region
 - MPD has more uniform coverage for the azimuthal angle
- The procedure for the resolution correction factor R₁ with 3 sub-event method and rapidityseparated combinations of Q-vectors was employed
 - Two separate estimations for the R₁ for each symmetry plane were found in a good agreement
- Directed and elliptic flow for protons and light mesons were measured
 - For each particle species v_1 and v_2 are consistent with the model signal mostly in backward rapidities
- Perform flow measurements for MPD FXT for different energies: $\sqrt{s_{NN}}=2.5$, 3.0, 3.5 GeV

Thank you for your attention!

Backup

Flow methods for v_n calculation

Tested in HADES: M Mamaev et al 2020 PPNuclei 53, 277-281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

 $v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$

Where R_1 is the resolution correction factor

$$R_1^{F1} = \langle \cos(\Psi_1^{F1} - \Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Method helps to eliminate non-flow Using 2-subevents doesn't work ц $F2{Tp(F1,F3)}$ 0.45E **F2** F2{T π (F1,F3)} 0.4F F2{T-(F1,F3)} 0.35F Г.J F2(F1,F3) 0.3E 0.25E 0.2 0.15E 0.1 0.05

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

15

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

35

centrality (%)

MPD-FXT: v_1 for π +

 v_1 is consistent with model signal for y < 1; We need more statistics

 v_2 is consistent with model signal for y < 0; We need more statistics

MPD-FXT: v_1 for π -

.

20

 v_2 is consistent with model signal for y < 0; We need more statistics

Anisotropic flow & spectators

The azimuthal angle distribution is decomposed in a Fourier series relative to reaction plane angle:

$$egin{aligned} & arphi(arphi-\Psi_{RP})=rac{1}{2\pi}(1+2\sum_{n=1}^\infty v_n\cos n(arphi-\Psi_{RP})) \end{aligned}$$
 Anisotropic flow:

$$v_n = \langle \cos\left[n(arphi - \Psi_{RP})
ight]
angle$$

Anisotropic flow is sensitive to:

- Time of the interaction between overlap region and spectators
- Compressibility of the created matter

v_n as a function of collision energy

P. DANIELEWICZ, R. LACEY, W. LYNCH 10.1126/science.1078070

Discrepancy is probably due to non-flow correlations

Density n_B [n_o] Describing the high-density matter using the mean field Flow measurements constrain the mean field

Anisotropic flow in Au+Au collisions at Nuclotron-NICA energies

Anisotropic flow at FAIR/NICA energies is a delicate balance between:

- I. The ability of pressure developed early in the reaction zone ($t_{exp} = R/c_s$, $c_s = c\sqrt{dp/d\varepsilon}$) and
- II. The passage time for removal of the shadowing by spectators ($t_{pass} = 2R/\gamma_{CM}\beta_{CM}$)

STAR-FXT vs JAM

R₁ for FHCal spectator plane

Good agreement between R₁ calculated using different combinations of Q-vectors with significant rapidity separation

v_1 for protons

v_2 for protons

 v_1 for pi+

29

v₂ for pi+

30

 v_1 for pi-

 v_2 for pi-

