
XXV International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics"

Contribution ID: 91

Type: not specified

Gluon distribution in nucleon and its applicaton to analysis of pp and AA collisions at high energes and mid-rapidity

Thursday 21 September 2023 15:50 (20 minutes)

The review of the transverse momentum dependent (TMD) gluon density and its application to analysis of pp and AA collisions in the wide region of initial energies at mid-rapidity is presented. It is shown that the noncolliniar QCD evolution is sensitive to the TMD gluon distributions at initial scale μ_0 . The new TMD gluon density in a proton at μ_0 is suggested using its saturation at low scales observed in DIS at HERA. Corresponding phenomenological parameters important at low x are found from the best description of charged hadron p_T -spectra in pp collisions at low hadron transverse momenta p_T in the mid-rapidity at the LHC energies. Other parameters important at moderate and large x are found from the satisfactory description of many data on hard pp processes at LHC energies. The Catani-Ciafaloni-Fiorani-Marchesini (CCFM) evolution equation is applied to extend the initial gluon distribution into the whole kinematical region.

The TMD gluon suggested in [1-4] is used to analyze the pion and kaon inclusive production in pp and BeBe collisions [5,6]. The satisfactory description of NA61/SHINE data on inclusive spectra versus their transverse momenta p_T less than 1 GeV are presented in [5,6]. The data on ratio of cross sections $R_{K/\pi} = \sigma_{K^{\pm}}/\sigma_{\pi^{\pm}}$ at the zero rapidity y are also described satisfactorily and predictions for high energies are presented.

Using the suggested TMD gluon distribution we obtain the self-consistent description of soft hadron production in pp collisions at moderate and high energies at mid-rapidity. Extension of proposed initial gluon distribution into the whole kinematical region using the CCFM evolution equation allows us to describe satisfactorily many data on hard pp processes at LHC energies.

REFERENCES

[1] V.A. Bednyakov, A.A. Grinyuk, G.I. Lykasov, M. Poghosyan, Int.J.Mod.Phys., A 27, 125042 (2012).

[2] A.A. Grinyuk, A.V. Lipatov, G.I. Lykasov, N.P. Zotov, Phys.Rev. D 87, 074017 (2013).

[3] A.V. Lipatov, G.I. Lykasov, M.A. Malyshev, Phys.Rev. D 107, 014022 (2023).

[4] A.V. Lipatov, G.I. Lykasov, M.A. Malyshev, Phys.Lett.B 839, 137780 (2023).

[5] G.I. Lykasov, A.I. Malakhov, A.A. Zaitsev, Eur. Phys. J. A 57, 91 (2021).

[6] G.I. Lykasov, A.I. Malakhov, A.A. Zaitsev, Eur. Phys. J. A 58, 112 (2022)

Author: LYKASOV, Gennady (JINR)

Co-authors: LIPATOV, Artem (SINP MSU); MALAKHOV, Aleksandr (JINR); MALYSHEV, Maxim (SINP MSU); ZAITSEV, Andrei (JINR, LHEP)

Presenter: LYKASOV, Gennady (JINR)

Session Classification: Parallel: Structure functions of hadrons and nuclei