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Rotation of QGP in heavy ion collisions

▶ QGP is created with non-zero angular momentum in
non-central collisions
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Rotation of QGP in heavy ion collisions

Angular velocity from STAR (Nature 548, 62 (2017))

▶ Ω = (PΛ + PΛ̄)
kBT
ℏ (Phys. Rev. C 95, 054902 (2017))

▶ Ω ∼ 10 MeV (v ∼ c at distances 10-20 fm, ∼ 1022s−1)
▶ Relativistic rotation of QGP

How relativistic rotation influences QCD?
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Lattice QCD

Lattice simulation
▶ Allows to study strongly interacting systems
▶ Based on the first principles of quantum field theory
▶ Powerful due to modern supercomputers and algorithms
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Lattice simulation of QCD

▶ We study QCD in thermodynamical equilibrium
▶ The system is in the finite volume
▶ Calculation of the partition function

Z ∼
∫
DUe−SG(U)

∏
i=u,d,s... det (D̂i(U) +mi)

▶ Monte Carlo calculation of the integral
▶ Carry out continuum extrapolation a → 0

▶ Uncertainties (discretization and finite volume effects) can
be systematically reduced

▶ The first principles based approach. No assumptions!
▶ Parameters: g2 and masses of quarks
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Study of rotating QGP

▶ Our aim: study rotating QCD within lattice simulations
▶ Rotating QCD at thermodynamic equilibrium

▶ At the equilibrium the system rotates with some Ω
▶ The study is conducted in the reference frame which

rotates with QCD matter
▶ QCD in external gravitational field

▶ Boundary conditions are very important!
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Details of the simulations

▶ Gluodynamics is studied at thermodynamic equilibrium in
external gravitational field

▶ The metric tensor

gµν =


1− r2Ω2 Ωy −Ωx 0

Ωy −1 0 0
−Ωx 0 −1 0
0 0 0 −1


▶ Geometry of the system: Nt ×Nz ×Nx ×Ny = Nt ×Nz ×N2

s
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Details of the simulations

▶ Partition function (Ĥ is conserved)

Z = Tr exp
[
−βĤ

]
=

∫
DA exp

[
−SG]

▶ Euclidean action

SG = − 1

2g2YM

∫
d4x

√
gE gµνE gαβE F (a)

µα Fνβ(a)

SG =
1

2g2YM

∫
d4xTr

[
(1− r2Ω2)F a

xyF
a
xy + (1− y2Ω2)F a

xzF
a
xz+

+(1− x2Ω2)F a
yzF

a
yz ++F a

xτF
a
xτ + F a

yτF
a
yτ + F a

zτF
a
zτ−

−2iyΩ(F a
xyF

a
yτ+F a

xzF
a
zτ )+2ixΩ(F a

yxF
a
xτ+F a

yzF
a
zτ )−2xyΩ2FxzFzy

]
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Details of the simulations

▶ Ehrenfest–Tolman effect: In gravitational field the
temperature is not constant in space at thermal
equilibrium

T (r)
√
g00 = const = 1/β

T (r)
√

1− r2Ω2 = 1/β

▶ Rotation effectively heats the system from the rotation axis to
the boundaries T (r) > T (r = 0)

▶ One could expect that rotation decreases the critical
temperature

▶ We use the designation T = T (r = 0) = 1/β
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Details of the simulations
Boundary conditions

▶ Periodic b.c.:
▶ Ux,µ = Ux+Ni,µ

▶ Not appropriate for the field of velocities of rotating body

▶ Dirichlet b.c.:
▶ Ux,µ

∣∣
x∈Γ

= 1, Aµ

∣∣
x∈Γ

= 0
▶ Violate Z3 symmetry

▶ Neumann b.c.:
▶ Outside the volume UP = 1, Fµν = 0

▶ The dependence on boundary conditions is the property of all
approaches

▶ One can expect that boundary conditions influence our results
considerably, but their influence is restricted due to the screening
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Details of the simulations

Sign problem

SG =
1

2g2YM

∫
d4xTr

[
(1− r2Ω2)F a

xyF
a
xy + (1− y2Ω2)F a

xzF
a
xz+

+(1− x2Ω2)F a
yzF

a
yz ++F a

xτF
a
xτ + F a

yτF
a
yτ + F a

zτF
a
zτ−

−2iyΩ(F a
xyF

a
yτ + F a

xzF
a
zτ ) + 2ixΩ(F a

yxF
a
xτ + F a

yzF
a
zτ )− 2xyΩ2FxzFzy

]

▶ The Euclidean action has imaginary part (sign problem)

▶ Simulations are carried out at imaginary angular velocities
Ω → iΩI

▶ The results are analytically continued to real angular velocities

▶ This approach works up to sufficiently large Ω 13



Details of the simulations: critical temperatures

Confinement/deconfinement phase transition

▶ Polyakov line

L =

〈
TrT exp

[
ig

∫
[0,β]

A4 dx
4

]〉
▶ Susceptibility of the Polyakov line

χ = N2
sNz

(
⟨|L|2⟩ − ⟨|L|⟩2

)
▶ Tc is determined from Gaussian fit of the χ(T )
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Results of the calculation (Neumann b.c.)
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Results of the calculation

▶ The results can be well described by the formula (C2 > 0)

Tc(ΩI)

Tc(0)
= 1− C2Ω

2
I ⇒ Tc(Ω)

Tc(0)
= 1 + C2Ω

2

▶ The critical temperature rises with angular velocity
▶ The results weakly depend on lattice spacing and the volume in

z-direction 16



Dependence on the transverse size

▶ The results can be well described by the formula

Tc(Ω)

Tc(0)
= 1−B2v

2
I , vI = ΩI(Ns−1)a/2, C2 = B2(Ns−1)2a2/4

▶ Periodic b.c.: B2 ∼ 1.3

▶ Dirichlet b.c.: B2 ∼ 0.5

▶ Neumann b.c.: B2 ∼ 0.7

▶ Good variable is v = ΩR, rather than Ω 17



Simulation with fermions

▶ Lattice simulation with Wilson fermions
▶ Critical couplings of both transitions coincide
▶ Critical temperatures are increased
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Simulation with fermions

▶ QCD action: S = Sf (ΩF ) + Sg(ΩG)

▶ One can introduce velocities for gluons ΩG and fermions ΩF

▶ ΩF ̸= 0,ΩG = 0 decreases critical temperatures
▶ ΩF = 0,ΩG ̸= 0 increases critical temperatures
▶ ΩG = ΩF ̸= 0 pull system to opposite directions but gluons win
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EoS of rotating gluodynamics

▶ Free energy of rotating QGP

F (T,R,Ω) = F0(T,R) + C2Ω
2 + ...

▶ The moment of inertia

C2 = −1

2
I0(T,R), I0(T,Ω) = − 1

Ω

(
∂F

∂Ω

)
T,Ω→0

▶ Instead of I0(T,R) we calculate K2 = − I0(T,R)
F0(T,R)R2

▶ Sign of K2 concides with the sign of I0(T,R)
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EoS of rotating gluodynamics

▶ Classical moment of inertia

I0(R) =

∫
V

d3xx2
⊥ρ0(x⊥)

▶ Related to the trace of EMT Tµ
µ = ρ0(x⊥)c

2

▶ Generation of mass scale in QCD and scale anomaly

Tµ
µ ∼ ⟨G2⟩ ∼ ⟨H2 + E2⟩

▶ In QCD the gluon condensate ⟨G2⟩ ≠ 0

▶ One could anticipate: ρ0 ∼ ⟨H2 + E2⟩?

▶ I0 = Ifluct + Icond valid for QCD!
Ifluct = ⟨J2

z ⟩ − (⟨Jz⟩)2
Icond = 1

3

∫
d3xr2⟨H2⟩
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Calculation of free energy on the lattice

▶ F = −T logZ impossible to calculate on the lattice
▶ ∂F

∂β ∼ ⟨∆s(β)⟩ = s(β)T − s(β)T=0, β = 6
g2

▶ F (T )
T 4 ∼

∫ β1

β0
dβ′⟨∆s(β′)⟩
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Moment of inertia of gluon plasma

▶ I(T,R) = −F0(T,R)K2R
2

▶ I < 0 for T < 1.5Tc and I > 0 for T > 1.5Tc

▶ Negative moment of inertia indicates a thermodynamic instability of rigid rotation
▶ The region of I < 0 is related to magnetic condensate and the scale anomaly
▶ We believe that the same is true for QCD
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Polyakov loop in rotating QGP(premiminary!)

▶ Week dependence at large temperatures

▶ No dependence at low teperatures

▶ Strong inhomogeneity of Polyakov loop close to ∼ Tc
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Inhomogeneous phase transitions in QGP

▶ Confinement in the center and deconfinement close to boundary
▶ Such configurations can be found close to Tc

▶ Vortex?
25



Inhomogeneous phase transitions in QGP

▶ As temperature is encreased, vortex penetrates closer to center

▶ Deconfinement appears on the boundaries and captures all
volume
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Conclusion

▶ Lattice study of rotating gluodynamics and QCD have been
carried out

▶ Critical temperatures rise with rotation
▶ We calculated the moment of inertia of GP. It is negative at

temperatures T < 1.5Tc and positive at larger temperatures
▶ Negative moment of inertia indicates a thermodynamic

instability of rigid rotation
▶ We observed inhomogeneous phase transitions in GP
▶ We believe that all observed effects remain in QCD

THANK YOU!
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