Scale Factor

Model Uncertainty (M.U.)

Jet macro parameter (MP)

QGL

CMS results

Gluon jet suppression

Summary

Measurement of q/g-jet fractions and related issues in the CMS experiment

S. Shulha

JINR (RU) F. Skorina GSU (BY)

XXVth International Baldin Seminar on High Energy Physics Problems September 18-23, 2023 JINR, Dubna

Scale Factor

- Model Uncertainty (M.U.)
- Jet macro parameter (MP)
- QGL
- CMS results
- Gluon jet suppressior
- Summary

 $h_{MC}(V)$ - NON-NORMALIZED jet histogram for jet macro parameter V - consists of q/g-histograms $h_{MC}^{g}(V)$ and $h_{MC}^{q}(V)$:

$$h_{\rm MC} = h_{\rm MC}^g + h_{\rm MC}^q$$
 $N_{entries} = N_{entries}^g + N_{entries}^q$

• $H_{MC}(V)$ - NORMALIZED histogram – linear combination of MC "q/g-templates" $H_{MC}^{g}(V)$ and $H_{MC}^{q}(V)$:

 To find three unknown "quantities" you need to write three equations for three jet samples. However, three jet samples have five unknowns – three "g-fractions" and two "q/g-templates...

- To find out g-jet fraction in the data, we need to accurately determine the objects (q/g-jets) that we recognize in the data
- So, in DATA, equation for measuring g-fraction must be written with MC q/gtemplates:

$$H_{\text{DAT}} = \alpha_{\text{DAT}}^g \cdot H_{\text{MC}}^g + (1 - \alpha_{\text{DAT}}^g) \cdot H_{\text{MC}}^q$$

• \Rightarrow measured g-fraction for V-bin:

$$\alpha_{\text{DAT}}^{g}(V) = \frac{H_{\text{DAT}}(V) - H_{\text{MC}}^{q}(V)}{H_{\text{MC}}^{g}(V) - H_{\text{MC}}^{q}(V)}$$

Definition: measured g-fraction in a sample = average of V-bins:

$$\alpha^{g} \equiv \langle \alpha_{V}^{g} \rangle = \frac{\sum_{V=1}^{N_{V}} \alpha_{V}^{g}}{N_{V}} \quad \text{with uncertainty } \Delta \alpha^{g} \equiv \frac{\sqrt{\langle \alpha_{V}^{g^{2}} \rangle - \langle \alpha_{V}^{g} \rangle^{2}}}{\sqrt{N_{V}}} \quad \text{(June, 2023 r)}$$

 Two sources of uncertainty Δα^g: statistical fluctuations and systematic deviation of true q/g-templates from model ones:

$$H^{f}_{\text{DAT}}(V) \neq H^{f}_{\text{MC}}(V)$$

3/19

Scale Factor To find true q/g-templates, H_{DAT}^q , H_{DAT}^g , we need two jet samples with the same kinematics:

$$H_{1,\text{DAT}} = \alpha_{1,\text{DAT}}^{g} \cdot H_{\text{DAT}}^{g} + (1 - \alpha_{1,\text{DAT}}^{g}) \cdot H_{\text{DAT}}^{q}$$
$$H_{2,\text{DAT}} = \alpha_{2,\text{DAT}}^{g} \cdot H_{\text{DAT}}^{g} + (1 - \alpha_{2,\text{DAT}}^{g}) \cdot H_{\text{DAT}}^{q}$$
$$\alpha_{2,\text{DAT}}^{g} \neq \alpha_{1,\text{DAT}}^{g}$$

• \Rightarrow find true q/g-templates:

$$H_{\text{DAT}}^{q} = \frac{\alpha_{2,\text{DAT}}^{g} H_{1,\text{DAT}} - \alpha_{1,\text{DAT}}^{g} H_{2,\text{DAT}}}{\alpha_{2,\text{DAT}}^{g} - \alpha_{1,\text{DAT}}^{g}}, \qquad H_{\text{DAT}}^{g} = (g \to q, 1 \leftrightarrow 2)$$

- Ratio $S^{f}(V) \equiv H_{\text{DAT}}^{f}/H_{\text{MC}}^{f}$ is called "data-driven Scale Factor"
- **Proposition**: Deviations of $S^{f}(V)$ from 1 are within uncertainties of measured $\alpha_{1,DAT}^{g}$ in $\alpha_{2,DAT}^{g}$ $\alpha_{1,DAT}^{g} \cdot (H_{MC}^{g} - H_{DAT}^{g}) + (1 - \alpha_{1,DAT}^{g}) \cdot (H_{MC}^{g} - H_{DAT}^{g}) + (1 - \alpha_{1,DAT}^{g}) \cdot (H_{MC}^{g} - H_{DAT}^{g}) \approx 0$ $H_{MC}^{g} - H_{DAT}^{g} \approx 0, \quad H_{MC}^{g} - H_{DAT}^{g} \approx 0$
 - **Corollary:** There is no SF task

- Introduction
- Scale Factor
- Model Uncertainty (M.U.)
- Jet macro parameters (MP)
- QGL
- CMS results
- Gluon jet suppressior
- Summary

5/19

- In CMS, task and method of finding "data-driven SF's" were defined **11 years ago** and are still an official recommendation
 - Why is that? →
 - 1st reason: only in 2018 we first showed possibility to measure g-fractions
 - We found a strong g-jet suppression (30-50%) in data relative to MC
 - 2nd reason: equations for SF were written in UNNORMALIZED form

 $h_{1,\text{DAT}}(V) = h_{1,\text{MC}}^g(V) \cdot S^g(V) + h_{1,\text{MC}}^q(V) \cdot S^q(V)$ $h_{2,\text{DAT}}(V) = h_{2,\text{MC}}^g(V) \cdot S^g(V) + h_{2,\text{MC}}^q(V) \cdot S^q(V)$

 \Rightarrow MC g-fractions are used but **hidden**! \Rightarrow SF is very large!

Scale Factor

Model Uncertainty (M.U.)

- Jet macro parameters (MP)
- QGL
- CMS results
- Gluon jet suppression
- Summary

- The model determines the g-fraction unambiguously and does not allow data-driven corrections
- However, the model q/g-templates and q/g-templates in DATA are very different $H_{DAT}^f \neq H_{MC}^f$
- To verify this, you need to measure g-fractions α_{DAT}^g with different jet Macro Parameters (MP) $\rightarrow \alpha_{\text{DAT}}^g$ will be different
- The reason for these differences is that the true MPs of the jets differ from the model ones
- Variation of α_{DAT}^{g} for "a complete set of independent jet MPs" gives "MODEL UNCERTAINTY" (M.U.)
- M.U. is for one model
- M.U. lower limit of THEORETICAL UNCERTAINTY

Scale Factor

Model Uncertainty (M.U.)

Jet macro parameters (MP)

QGL

CMS results

Gluon jet suppressior

Summary

 To determine M.U., we take the "complete set of independent jet MPs" V_{1,2,...,M} and average over all V_{1,2,...,M}-bins:

$$\alpha^g \equiv \left< \alpha^g_V \right> = \frac{\sum_{k=1}^M \sum_{V_k=1}^{N_{V_k}} \alpha^g_{V_k}}{N_V}$$

Jncertainty
$$\Delta \alpha^g \equiv \frac{\sqrt{\langle \alpha_V^g^2 \rangle - \langle \alpha_V^g \rangle^2}}{\sqrt{N_V}}$$

l

 $N_V \equiv \sum_{k=1}^M N_{V_k}$

 $\Delta \alpha^{g}$ includes stat. uncert. and syst. deviations of model q/g-templates for all MPs $V_{1,2,...,M}$ from unknown q/g-templates in DATA

 $= V_1$

MPs that are most sensitive to jet flavours ¹

Ο

8/19

QGL

Combined jet MP: discriminator Quark-Gluon Likelihood (QGL)¹:

$$V_4 \equiv QGL = \frac{Q(\vec{V})}{Q(\vec{V}) + G(\vec{V})}$$

$$(V_1 = mult, V_2 = a_2, V_3 = p_T D) \equiv \vec{V}$$

 $Q(\vec{V}) = \prod_{i=1}^{3} H^q(V_i), \qquad G(\vec{V}) = \prod_{i=1}^{3} H^g(V_i)$

The sensitivity of QGL to jet flavour is much stronger:

¹ CMS PAS JME-13-002 CMS PAS JME-16-003

- QGL-templates are used to mark q/g jets
- Measurement of g-fractions is good test for QGL:
 - We measured g-fractions with QGL templates and got incorrect gfractions
 - We prepared new QGLs for CMS Run-2 and tested them by measuring g-fractions

- Introduction
- Scale Factor
- Model Uncertainty (M.U.)

Jet macro parameter (MP)

QUL

CMS results

Gluon jet suppression Summary

 This preliminary results were obtained in CMS group "Gluonjet/Quark-jet analyses" ¹:

S.S., D.Budkouski(JINR), J.Strologas (GR), O.Atakisi(TR)

 This group was created in April 2021 purposefully to measure gfractions in inclusive jet channel with Run-II data

¹<u>https://indico.cern.ch/category/12755/</u>

 Measurement of g-fraction demonstrates indirectly large deviation of true unknown DATA q/g-templates from Pythia8 ones

Here are the results of measuring α^{g} using MP's: $V_{1,2,3,4} = mult, a_2, p_T D, QGL$

Scale Factor

Model Uncertainty (M.U.)

Jet macro parameter (MP)

QGL

CMS results

Gluon jet suppression

Summary

MadGraph5+Pythia8

JetFinder Anti-kT, R = 0.4

Gluon jet

suppression

 We must attribute the 1st observation of g-jet suppression to those who calculated SF using the official method: <u>Run-1(2013</u>) and <u>Run-2(2016)</u>:

However, only after measuring g-fractions, we understand why gluon SF **was so large** - the reason is used MC g-fractions and that $\alpha_{\text{DAT}}^g \ll \alpha_{\text{MC}}^g$

 The SF-modified g-template has a left peak 35% lower and a right peak 100% higher than the original MC g-template

Scale Factor

Model Uncertainty (M.U.)

Jet macro parameter (MP)

QGL

CMS results

Gluon jet suppression

- Similar results we obtained earlier for Run-I (2012)
- Run-I results are well documented:

S.S., S.Shmatov, A.Zarubin: CMS AN-2018-131, 2018

S.S. D.Budkouski, CMS AN-2020-143, 2020

S.S. D.Budkouski, CMS AN-2021-024, 2021

S.S. SMP-HAD Workshop, 11 Feb 2020, https://indico.cern.ch/event/861896/

S.S. SMP-HAD Meeting, 1 June 2018, https://indico.cern.ch/event/732652/

N_{jets}^{evt}	Jet name	P_T^{jet} , GeV	$\alpha_k^{g,DAT}$, %	$lpha_k^{g,MC}$, %
4	W-jets	30÷150	0÷5 (±5)	$10{\div}11$
≥ 5	5 th -jets	30÷90	0÷3 (±5)	28÷34

Run-I(2012) semileptonic $t\bar{t}$

$A \cdot \Delta \tilde{n} = \Delta \alpha^{g}$

Jet macro parameters (MP)

QGL

CMS results

Gluon jet suppression

Summary

- $\Delta \tilde{n} = A \Delta \alpha^{g} \approx 0$ in 1st and 2nd bins !
- Measurement of mean jet chargedparticle multiplicity inside jet indirectly confirms g-jet suppression

18/19

- Scale Factor
- Model Uncertainty (M.U.)
- Jet macro parameters (MP)
- QGL
- CMS results
- Gluon jet suppression
- Summary

- Measurement of g-fractions was proposed, developed and implemented for many channels in CMS (Run-1 and Run-2)
- "Data-driven SF's" \approx 1: there is no task to find SFs for MC q/g-templates
- Model uncertainty: a large discrepancy between the Pythia8 hadronization model and the real picture of the process
- Suppression of g-jets in the region of low P_T^{jet} is observed (not approved in CMS yet, but work for inclusive jets is in final stage)
- Possible reason of g-jet suppression: gluon splitting at the beginning of parton branching, $g \rightarrow gg$, $g \rightarrow q\bar{q}$ need to be investigated **experimentally**