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Motivation
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Figure 2: Compilation of experimental results for pr — N
Figure 1: QCD phase transition diagram. correlations for various experiments and energies.

® transition from negative to positive correlations: multipomeric model [N. Amestoer al., Phys. of Atom. Nucl., 71. 2087-2095 2008)]

® restrictions for models (PYTHIA, Herwig++ and etc.)
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Models

® EPOS (Energy-conserving quantum mechanical multiple scattering approach, based on Partons (parton
ladders), Off-shell remnants, and Splitting of parton ladders). This model [. Wemeret at., Phys.Rev. €74, 044902 2006) | takes
into account the multiple scattering approach based on partons and pomerons (parton ladders). It is based on a
string model.
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Figure 3: Closed parton ladder. Figure 4: Open parton ladder.

® SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) is a relativistic hadron transport
approach [1. weiter ar., arxiv:1606.06642 nuct-tn] 2017)]. Includes all known hadrons with mass up to ~ 2 GeV as degrees of
freedom.

® PHSD (Parton-Hadron-String Dynamics)|E. Bratkovskaya er al., arXiv:1908.00451 [nucl-th] 2019)] presents a microscopic out-of-shell
transport approach to describe strongly interacting hadronic and partonic matter in and out of equilibrium.

® UrQMD (Ultra-relativistic Quantum Molecular Dynamics)[Mm. Bieicher et al., arXiv:hep-ph/9909407 [hep-ph (1999).] 1S @ microscopic
model used to simulate (ultra)relativistic heavy ion collisions in the energy range from Bevalac and SIS to
AGS, SPS and RHIC.
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Definitions and observables: strongly intensive quantities

Types of quantities: strongly intensive, intensive and extensive.
Strongly intensive quantities do not depend either on the volume of the system or on fluctuations in the volume of
the system.

w[N] _ <N > _ <N>

Ny — extensive quantitie (@€))]
Alpi, N] = m [(N)w [Pt] — {(Pt)w [N]] — strongly intensive quantitie 2)
X[p:, N] = m [(NYw [Pt] + (Pr)w [N] — 2 ((PrN) — (Pr)(N))] — strongly intensive quantitie ~ (3)

[M. Gorenstein, M. Gazdzicki, Phys. Rev. C 84, 014904 (201 ])]

where Pr = 3"V | pr,, and w[pr] is the scaled variance of the inclusive pr spectrum. A[pr, N] = Z[pr,N] =1 -
value for the independent particle production model, A[pr, N] = X[pr, N] = 0 - in the absence of fluctuations.
Also, another strongly intensive quantity [m. cody.s. Gavin, B. Koch et al., Phys. Rev. C 107, 014909 (2023)]

(N)Dlpt, N] = ﬁ [((PTN) = (Pr)(N)) — (Pw [N]] @)
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Common define of cumulant

The average of Q(Aq, ..., An) over many collision events is a weighted integral of f(p1, ..., Pn):

(Q(A1, ..., An)) =/q1(p1)~-qn(pn)f(p1,-..,pn) ©)
P

We refer to such averages as moments. The cumulant decomposition applies to moments after multiplying equations
(2) and (3) by gi(pi) and integrating over p;. The cumulant of order 2 is thus given by the inversion formula

(Q(A1, A2))c = (Q(A1, A2)) — (Q(A1))(Q(Az)) (6)
(QiQ2)e = (Q1Q2) — (Q1)(Q2) @)

(Q1QeQs)c = (A1 Q2Qs) — (3

(Q1 Q) (Qs) — ()]

(QQs)(Qr) — (10

(QiQs) () + (11

2(Qi)(Q2)(Qs) 12

Note that the cumulant is unchanged if one shifts Q; by a constant value. This property of translational invariance,
which is true to all orders, explains why cumulants are remarkably stable with respect to detector imperfections.

[Ph. Di Francesco er al., Phys. Rev. C 95, 044911 (2017) ]
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Standart method

The n-particle correlator for pr in one event is defined as:

Dt tin Wi win (P = ((PT))) - (PT.in — ((PT)))

Cnh= (13)
! Zq#“.;ﬁn Wiy -+ Wip
(Ca) (Cs)
K2 = y K3 = ) (14
*T (e T ()
where wj is the weight for particle /. Cumulants are calculated by averaging C, over a given ensemble of events.
R
Pmk = w:P/ Wi, Tk = ii (15)
k I /Z k = (Z, w,>k+1
denoting p = pr:
Pix = pik — ((pr)) (16)
Pax = 20{(pr)) + ((P7))? an
Bax = Pax — 3pax{(pr) + 3pu((pr))? — ((pr))° (18)
Pak = Pak — 4Psi((Pr)) + 6p2k((p7))* — 4puc{(p7))” + ({pr))* (19)

[Bhatta S. et. al. Phys. Rev. C 105, 024904
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Standart method

Note that ((pr)) = (p11) is the mean value of pr averaged over ensemble of events.

72 —
Co= ’0‘1‘%222 (20)
73 __ — __
_ P11 = 3P2oP11 +2P33
C3 o 1-31+2n @b
D11 — 6PP;1 + 3Dbp + 8Pa3Py; — 6D
C4 — 11 22M11 32 33M11 44 (22)
1—671 + 377 +8m — 673
(Co)
- , 23
"2 = Tpn)? @)
(Cs)
= B 24
"= Torye @4
(cs) — 3(c2)?
=2 — ) 25
= o)y @)

where particles are taken from |ycys|<1 and only unique combinations of particles in the event are taken
into account.

[Bhatta s. er. al. Phys. Rev. € 105, 024904]
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Subevent method
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Figure 5: Intervals of rapidity that were chosen in the work for p+p collisions.

(26)

27

(28)
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Results for strongly intensive variables: p+p
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Figure 6: Dependence of X[pr, N] on beam energy for

proton-proton collisions.

® The transition from resonances to strings in the models generates a “wave”, which is observed on the graphs of X [pr, N] and

Alpr, N] for collision energy.
® Event selection criteria: —1.0 < yous < 1.0, 0.15 < pr < 2.0 GeV/c.

® Alpr,N] = X[pr,N] =1 - value for the independent particle production model, A[pr, N] = X[p7, N] = 0 - in the

Figure 7: Dependence of A[pr, N] on beam energy for

proton-proton collisions.

absence of fluctuations - deviation from these restrictions is observed
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Results for highly intensive variables: p+p
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Figure 8: Dependence of (N) D[p;, N] on beam energy.

D # 0 - PYTHIA/Angantyr [m. cody, s. Gavin, B. Koch et al, Phys. Rev. C 107, 014909 (2023)].
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Results for second and third order cumulants: p+p, UrQMD
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Figure 9: Dependence of the second-order cumulant for
transverse momentum in proton-proton collisions.

® HIJING - k2 > 0 k3 > 0. [5.Bhata er al., Phys. Rev. C 105, 024904].
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Figure 10: Dependence of the third order cumulant for
transverse momentum in proton-proton collisions.
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Results of comparison of two methods for calculating cumulants: p+p,

UrQMD
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Figure 11: Dependence of the second-ord lant for on

energy in proton-proton collisions, calculated in two ways for the UrQMD model.

There is obvious discrepancy of the two methods.

K3
T

06—

04—

02—

- - standart_method

-+ - subevent_method

Il
5G&

Figure 12: Depend

of the sec

der cumulant for

on

energy in proton-proton collisions, calculated in two ways for the UrQMD model.
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Results of comparison of two methods for calculating cumulants: p+p,
UrQMD
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Figure 13: Dependence of the fourth-order cumulant for transverse momentum on energy in proton-proton collisions, calculated in two ways for the
UrQMD model.
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Results for subevent method for calculating cumulants: p+p, UrQMD
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There is a clear decrease in correlations with increasing distance between intervals of rapidity.
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Results for second and third order cumulants: p+p
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Figure 16: Dependence of the third order cumulant for
transverse momentum in proton-proton and Bi+Bi

collisions.

® HIJING - k2 > 0 K3 > 0. [s Bhatacral. Phys. Rev. C 105, 024904].
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Results for fourth order cumulants: Bi+Bi, UrQMD
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Figure 17: Dependence of the four-order cumulant for transverse momentum in proton-proton and Bi+Bi collisions.

® Dynamics of evolution and final-state interaction can lead to a deviation from this power-law behavior.

® Indeed, experimental measurements of pr variance in Au + Au collisions at \/Syy = 200 GeV and Pb + Pb collisions at
v/SNN = 2.76 TeV have reported the power to be =~ 0.81 instead of the expected value of 1.

® This clear deviation from the baseline of independent source picture in the experimental data indicates the presence of
long-range collective correlations and significant final-state effects.
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Experimental results for cumulants from STAR: Au+Au, U+U
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Figure 18: Experimental results from STAR collaboration [Chunjian Zhang, New results from flow, chirality and vorticity at RHIC-STAR .
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Conclusions

e The SMASH model is an example of demonstrating the transition from the resonance regime to the string regime.
e A comparison is given of two different methods for calculating cumulants - the standard and the subevent method
to eliminate short-range correlations. These methods give different results.

e Significant discrepancies are observed between the predictions of the EPOS, SMASH, PHSD, and UrQMD
models, indicating that future data on p + p collisions from the NICA experiment will constrain the predictions of
these models and also refine results.

e The nontrivial dependence of pr cumulants on collision energy predicted by models for the “basic” p 4 p reaction
highlights the difficulties in interpreting future results for A + A collisions and requires further research

e The cumulants for the Bi+Bi reaction show approximately the same trend as the cumulants for p 4+ p collisions.

o This research supported by Saint Petersburg State University (ID: 94031112).
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Figure 19: (Left) Variance obtained for the standard method and the subevent method with different rapidity intervals in Pb + Pb collisions for
0.2 < pr < 2GeV as a function of Ngp. (Right) Ratio of the results of the subevent method to the results of the standard method[s. Bhatta et al., Phys.
Rev. C 105, 024904].
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Figure 20: Second (left), third (center), and fourth (right) order moments in Pb+Pb collisions using standard (solid dots) and method of two

subevents (empty dots) for charged particles in the range 0.2 < pr < 5.0 GeV depending on Ngp.[S. Bhatta er al., Phys. Rev. C 103, 024904].
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Back-up

In the subevent method (2subevent), combinations of particles are selected from two subevents separated by rapidity

in CMS.

a:(—0.2 < yems <0.0) ¢: (0.0 < yems < 0.2)
a:(—0.3 < yems < —0.1) ¢: (0.1 < yoms < 0.3)
a:(—0.4 < yoms < —0.2) c: (0.2 < yems < 0.4)
a:(—0.6 < yems < —0.4) c: (0.4 < yous < 0.6)
a:(—0.7 < yems < —0.5) ¢: (0.5 < yomus < 0.7)
a: (—1 0< Yems < —08) C: (08 < Yems < 10)

C2,2sub = (,511)a (,511)5
(6% = P22) (1)

C3,2sub1 = 1=
— Ma
72 p— —
(,011 - pzz)c (P11)a
C3,2sub2 = 1
— Tic

(B P2, (P - P2),

G = A7) —7)

2C3 25ub = C3,25ub1 + C3,25ub2- [BhattaS. . al. Phys. Rev. € 105, 024904]

(29)

(30)

(3D

(32)
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Back-up

denoting p = pr:

Note here

Pax = Pak — 4P {((p1)) + 621 ((P7))? — 4P

Pmk = UU'/ Pi /Zwl s Tk = Zw’ )k+1

P =p
Pak = 2pik((pr
Pk = P3k — 3pak{({P1)) + 3P1k((
(

~ =
+
—~

)
pr))?
pr))°

((pr)) = (p11)

(33)

(34)
(35)
(36)
(37)

(38)
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