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Motivation

Figure 1: QCD phase transition diagram.
Figure 2: Compilation of experimental results for pT − N
correlations for various experiments and energies.

• transition from negative to positive correlations: multipomeric model [N. Armestoet al., Phys. of Atom. Nucl., 71. 2087-2095 (2008)]
• restrictions for models (PYTHIA, Herwig++ and etc.)
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Models
• EPOS (Energy-conserving quantum mechanical multiple scattering approach, based on Partons (parton

ladders), Off-shell remnants, and Splitting of parton ladders). This model [K. Werneret al., Phys.Rev. C74, 044902 (2006)]takes
into account the multiple scattering approach based on partons and pomerons (parton ladders). It is based on a
string model.

Figure 3: Closed parton ladder. Figure 4: Open parton ladder.

• SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) is a relativistic hadron transport
approach [J. Weilet al., arXiv:1606.06642 [nucl-th] (2017)]. Includes all known hadrons with mass up to ∼ 2 GeV as degrees of
freedom.

• PHSD (Parton-Hadron-String Dynamics)[E. Bratkovskaya et al., arXiv:1908.00451 [nucl-th] (2019)] presents a microscopic out-of-shell
transport approach to describe strongly interacting hadronic and partonic matter in and out of equilibrium.

• UrQMD (Ultra-relativistic Quantum Molecular Dynamics)[M. Bleicher et al., arXiv:hep-ph/9909407 [hep-ph] (1999).] is a microscopic
model used to simulate (ultra)relativistic heavy ion collisions in the energy range from Bevalac and SIS to
AGS, SPS and RHIC.
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Definitions and observables: strongly intensive quantities

Types of quantities: strongly intensive, intensive and extensive.
Strongly intensive quantities do not depend either on the volume of the system or on fluctuations in the volume of
the system.

ω[N] =
⟨N2⟩ − ⟨N⟩2

⟨N⟩ − extensive quantitie (1)

∆[pt ,N] =
1

⟨N⟩ω [pt ]
[⟨N⟩ω [Pt ]− ⟨Pt⟩ω [N]]− strongly intensive quantitie (2)

Σ[pt ,N] =
1

⟨N⟩ω [pt ]
[⟨N⟩ω [Pt ] + ⟨Pt⟩ω [N]− 2 (⟨PT N⟩ − ⟨PT ⟩⟨N⟩)]− strongly intensive quantitie (3)

[M. Gorenstein, M. Gazdzicki, Phys. Rev. C 84, 014904 (2011)]
where PT =

∑N
i=1 pTi , and ω[pT ] is the scaled variance of the inclusive pT spectrum. ∆[pT ,N] = Σ[pT ,N] = 1 -

value for the independent particle production model, ∆[pT ,N] = Σ[pT ,N] = 0 - in the absence of fluctuations.
Also, another strongly intensive quantity [M. Cody, S. Gavin, B. Koch et al., Phys. Rev. C 107, 014909 (2023)]:

⟨N⟩D[pt ,N] =
1

⟨N⟩ [(⟨PT N⟩ − ⟨PT ⟩⟨N⟩)− ⟨Pt⟩ω [N]] (4)
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Common define of cumulant

The average of Q(A1, ...,An) over many collision events is a weighted integral of f (p1, ..., pn):

⟨Q(A1, ...,An)⟩ =
∫

p
q1(p1)...qn(pn)f (p1, ..., pn) (5)

We refer to such averages as moments. The cumulant decomposition applies to moments after multiplying equations
(2) and (3) by qi(pi) and integrating over pi . The cumulant of order 2 is thus given by the inversion formula

⟨Q(A1,A2)⟩c ≡ ⟨Q(A1,A2)⟩ − ⟨Q(A1)⟩⟨Q(A2)⟩ (6)

⟨Q1Q2⟩c ≡ ⟨Q1Q2⟩ − ⟨Q1⟩⟨Q2⟩ (7)

⟨Q1Q2Q3⟩c ≡ ⟨Q1Q2Q3⟩ − (8)

⟨Q1Q2⟩⟨Q3⟩ − (9)

⟨Q2Q3⟩⟨Q1⟩ − (10)

⟨Q1Q3⟩⟨Q2⟩+ (11)

2⟨Q1⟩⟨Q2⟩⟨Q3⟩ (12)

Note that the cumulant is unchanged if one shifts Qi by a constant value. This property of translational invariance,
which is true to all orders, explains why cumulants are remarkably stable with respect to detector imperfections.
[Ph. Di Francesco et al., Phys. Rev. C 95, 044911 (2017)]
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Standart method
The n-particle correlator for pT in one event is defined as:

(13)Cn =

∑
i1 ̸=... ̸=in

ωi1 ...ωin (pT ,i1 − ⟨⟨pT ⟩⟩)...(pT ,in − ⟨⟨pT ⟩⟩)∑
i1 ̸=... ̸=in

ωi1 ...ωin

κ2 =
⟨C2⟩

⟨⟨pT ⟩⟩2 , κ3 =
⟨C3⟩

⟨⟨pT ⟩⟩3 , (14)

where ωi is the weight for particle i . Cumulants are calculated by averaging cn over a given ensemble of events.

pmk =
∑

i

ωk
i pm

i /
∑

i

ωk
i , τk =

ωk+1
i(∑

i ωi
)k+1 (15)

denoting p ≡ pT :

p1k ≡ p1k − ⟨⟨pT ⟩⟩ (16)

p2k ≡ 2p1k ⟨⟨pT ⟩⟩+ ⟨⟨pT ⟩⟩2 (17)

p3k ≡ p3k − 3p2k ⟨⟨pT ⟩⟩+ 3p1k ⟨⟨pT ⟩⟩2 − ⟨⟨pT ⟩⟩3 (18)

p4k ≡ p4k − 4p3k ⟨⟨pT ⟩⟩+ 6p2k ⟨⟨pT ⟩⟩2 − 4p1k ⟨⟨pT ⟩⟩3 + ⟨⟨pT ⟩⟩4 (19)

[Bhatta S. et. al. Phys. Rev. C 105, 024904]
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Standart method
Note that ⟨⟨pT ⟩⟩ = ⟨p11⟩ is the mean value of pT averaged over ensemble of events.

C2 =
p2

11 − p22

1 − τ1
(20)

C3 =
p3

11 − 3p22p11 + 2p33

1 − 3τ1 + 2τ2
(21)

C4 =
p4

11 − 6p22p2
11 + 3p2

22 + 8p33p11 − 6p44

1 − 6τ1 + 3τ 2
1 + 8τ2 − 6τ3

(22)

κ2 =
⟨C2⟩

⟨⟨pT ⟩⟩2 , (23)

κ3 =
⟨C3⟩

⟨⟨pT ⟩⟩3 , (24)

κ4 =
⟨c4⟩ − 3⟨c2⟩2

⟨⟨pT ⟩⟩4 (25)

where particles are taken from |yCMS |<1 and only unique combinations of particles in the event are taken
into account.
[Bhatta S. et. al. Phys. Rev. C 105, 024904]
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Subevent method

κ2,sub =
⟨c2,2sub⟩

⟨⟨pT ⟩⟩f ⟨⟨pT ⟩⟩b
(26)

κ3,2sub1 =
⟨c3,2sub1⟩

⟨⟨pT ⟩⟩2
f ⟨⟨pT ⟩⟩b

, κ3,2sub2 =
⟨c3,2sub2⟩

⟨⟨pT ⟩⟩f ⟨⟨pT ⟩⟩2
b

(27)

κ4,2sub =
⟨c4,2sub⟩ − 2⟨c2,2sub⟩2 − ⟨c2⟩a⟨c2⟩c

⟨⟨pT ⟩⟩2
a⟨⟨pT ⟩⟩2

c
(28)

Figure 5: Intervals of rapidity that were chosen in the work for p+p collisions. 9 / 23



Results for strongly intensive variables: p+p
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Figure 6: Dependence of Σ[pT , N] on beam energy for
proton-proton collisions.
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Figure 7: Dependence of ∆[pT , N] on beam energy for
proton-proton collisions.

• The transition from resonances to strings in the models generates a “wave”, which is observed on the graphs of Σ[pT ,N] and
∆[pT ,N] for collision energy.

• Event selection criteria: −1.0 < yCMS < 1.0, 0.15 < pT < 2.0 GeV/c.
• ∆[pT ,N] = Σ[pT ,N] = 1 - value for the independent particle production model, ∆[pT ,N] = Σ[pT ,N] = 0 - in the

absence of fluctuations - deviation from these restrictions is observed
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Results for highly intensive variables: p+p
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Figure 8: Dependence of ⟨N⟩D[pt , N] on beam energy.

D ̸= 0 - PYTHIA/Angantyr [M. Cody, S. Gavin, B. Koch et al., Phys. Rev. C 107, 014909 (2023)].
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Results for second and third order cumulants: p+p, UrQMD
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Figure 9: Dependence of the second-order cumulant for
transverse momentum in proton-proton collisions.
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Figure 10: Dependence of the third order cumulant for
transverse momentum in proton-proton collisions.

• HIJING - κ2 > 0 κ3 > 0. [S. Bhatta et al., Phys. Rev. C 105, 024904].
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Results of comparison of two methods for calculating cumulants: p+p,
UrQMD
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Figure 11: Dependence of the second-order cumulant for transverse momentum on
energy in proton-proton collisions, calculated in two ways for the UrQMD model.
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Figure 12: Dependence of the second-order cumulant for transverse momentum on
energy in proton-proton collisions, calculated in two ways for the UrQMD model.

There is obvious discrepancy of the two methods.
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Results of comparison of two methods for calculating cumulants: p+p,
UrQMD
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Figure 13: Dependence of the fourth-order cumulant for transverse momentum on energy in proton-proton collisions, calculated in two ways for the
UrQMD model.
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Results for subevent method for calculating cumulants: p+p, UrQMD
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Figure 14: Dependence of the second order cumulant depending on the
rapidity intervals.

There is a clear decrease in correlations with increasing distance between intervals of rapidity.
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Results for second and third order cumulants: p+p
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Figure 15: Dependence of the second-order cumulant for
transverse momentum in proton-proton and Bi+Bi
collisions.
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Figure 16: Dependence of the third order cumulant for
transverse momentum in proton-proton and Bi+Bi
collisions.

• HIJING - κ2 > 0 κ3 > 0. [S. Bhatta et al., Phys. Rev. C 105, 024904].
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Results for fourth order cumulants: Bi+Bi, UrQMD
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Figure 17: Dependence of the four-order cumulant for transverse momentum in proton-proton and Bi+Bi collisions.

• Dynamics of evolution and final-state interaction can lead to a deviation from this power-law behavior.
• Indeed, experimental measurements of pT variance in Au + Au collisions at

√
sNN = 200 GeV and Pb + Pb collisions at√

sNN = 2.76 TeV have reported the power to be ≈ 0.81 instead of the expected value of 1.
• This clear deviation from the baseline of independent source picture in the experimental data indicates the presence of

long-range collective correlations and significant final-state effects.
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Experimental results for cumulants from STAR: Au+Au, U+U

Figure 18: Experimental results from STAR collaboration [Chunjian Zhang, New results from flow, chirality and vorticity at RHIC-STAR ].
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Conclusions

• The SMASH model is an example of demonstrating the transition from the resonance regime to the string regime.
• A comparison is given of two different methods for calculating cumulants - the standard and the subevent method
to eliminate short-range correlations. These methods give different results.
• Significant discrepancies are observed between the predictions of the EPOS, SMASH, PHSD, and UrQMD
models, indicating that future data on p + p collisions from the NICA experiment will constrain the predictions of
these models and also refine results.
• The nontrivial dependence of pT cumulants on collision energy predicted by models for the “basic” p + p reaction
highlights the difficulties in interpreting future results for A + A collisions and requires further research
• The cumulants for the Bi+Bi reaction show approximately the same trend as the cumulants for p + p collisions.
• This research supported by Saint Petersburg State University (ID: 94031112).
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Back-up

Figure 19: (Left) Variance obtained for the standard method and the subevent method with different rapidity intervals in Pb + Pb collisions for
0.2 < pT < 2 GeV as a function of Nch . (Right) Ratio of the results of the subevent method to the results of the standard method[S. Bhatta et al., Phys.

Rev. C 105, 024904].
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Back-up

Figure 20: Second (left), third (center), and fourth (right) order moments in Pb+Pb collisions using standard (solid dots) and method of two
subevents (empty dots) for charged particles in the range 0.2 < pT < 5.0 GeV depending on Nch .[S. Bhatta et al., Phys. Rev. C 105, 024904].
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Back-up
In the subevent method (2subevent), combinations of particles are selected from two subevents separated by rapidity
in CMS.
a : (−0.2 < yCMS < 0.0) c : (0.0 < yCMS < 0.2)
a : (−0.3 < yCMS < −0.1) c : (0.1 < yCMS < 0.3)
a : (−0.4 < yCMS < −0.2) c : (0.2 < yCMS < 0.4)
a : (−0.6 < yCMS < −0.4) c : (0.4 < yCMS < 0.6)
a : (−0.7 < yCMS < −0.5) c : (0.5 < yCMS < 0.7)
a : (−1.0 < yCMS < −0.8) c : (0.8 < yCMS < 1.0)

c2,2sub = (p11)a (p11)c (29)

c3,2sub1 =

(
p2

11 − p22

)
a
(p11)c

1 − τ1a
(30)

c3,2sub2 =

(
p2

11 − p22

)
c
(p11)a

1 − τ1c
(31)

c4 =

(
p2

11 − p22

)
a

(
p2

11 − p22

)
c

(1 − τa)(1 − τc)
(32)

2c3,2sub = c3,2sub1 + c3,2sub2. [Bhatta S. et. al. Phys. Rev. C 105, 024904]
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Back-up

pmk =
∑

i

ωk
i pm

i /
∑

i

ωk
i , τk =

ωk+1
i(∑

i ωi
)k+1 (33)

denoting p ≡ pT :

p1k ≡ p1k − ⟨⟨pT ⟩⟩ (34)

p2k ≡ 2p1k ⟨⟨pT ⟩⟩+ ⟨⟨pT ⟩⟩2 (35)

p3k ≡ p3k − 3p2k ⟨⟨pT ⟩⟩+ 3p1k ⟨⟨pT ⟩⟩2 − ⟨⟨pT ⟩⟩3 (36)

p4k ≡ p4k − 4p3k ⟨⟨pT ⟩⟩+ 6p2k ⟨⟨pT ⟩⟩2 − 4p1k ⟨⟨pT ⟩⟩3 + ⟨⟨pT ⟩⟩4 (37)

Note here

⟨⟨pT ⟩⟩ = ⟨p11⟩ (38)
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