On Fractional Analytic QCD
O npobno-anamuTudeckoit KX/I
A.V. Kotikov*', I.A. Zemlyakov™"?

A.B. Komuxoe®, H.A. Bemaaros™®

% Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear
Research, 141980 Dubna, Russia

¢ Jlaboparopus Teoperudeckoit buzuku, ObbeMHEHHBI UHCTUTYT SIEPHBIX
nccenosanuii, 141980 ybua, Poccus

b Tomsk State University, 634010 Tomsk, Russia

b Tomckuit rocymapcreennniit yausepcutet, 634010 Tomck, Poccusa

Mpgr ipescraBasgeM KpaTkuit 0030p apobuo-anansuTrdeckoit KX I,

We present a brief overview of fractional analytic QCD.

PACS: 44.25.41; 44.90.4+c

Introduction

The strong coupling constant (couplant) a,(Q?) obeys the renormaliza-
tion group equation
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with some boundary condition and the QCD S-function:
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for f active quark flavors. Really now the first fifth coefficients are exactly
known [1]. In our present consideration we will need only i = 0 and i = 1.

So, already at leading order (LO), where a4(Q?%) = agl)(QQ), we have from
Eq. (1)
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i.e. al’(Q?) does contain a pole at Q* = A2
In [2], an efficient approach was developed to eliminate the Landau sin-

gularity. It is based on the dispersion relation, which connects the new
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analytic couplant Aya(Q?) with the spectral function rp(s) obtained in the
PT framework. In LO this gives

1 [T ds
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This approach is usually called Minimal Approach (MA) (see, e.g., [3]) or
Analytical Perturbation Theory (APT) [2].

Further APT development is the so-called fractional APT (FAPT) |4],
which extends the principles of construction described above to PT series
starting with non-integer degrees of the couplant. Within the framework of
QF'T, such series arise for quantities having non-zero anomalous dimensions.

In this short paper we give an overview of the basic properties of MA
couplants, obtained in [5] using the so-called 1/L-expansion. Note that for
an ordinary couplant, this expansion is only applicable for large ) values,
i.e. for Q? >> A% However, as shown in [5, 0], the situation is completely
different in the case of analytic couplants: this 1/L-expansion is applicable
for all argument values. This is due to the fact that non-leading corrections
to the expansion disappear not only at Q% — oo, but also at Q? — 0, which
leads only to nonzero (small) corrections in the region Q% ~ A2

Below we consider the representations for the MA couplants and their
(fractional) derivatives obtained in [5,6] in principle, in any PT order. How-
ever, in order to avoid cumbersome formulas, but at the same time to show
the main features of the approach, we limit ourselves to considering only the
first two PT orders.

1. Strong couplant

As shown in the Introduction, a,(Q?) obeys the renormalized group equa-
tion (1). When Q% >> A% Eq. (1) can be solved by iterations in the form
of a 1/L-expansion, which can be represented in the following compact form

1
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So, in any PT order, the couplant a,(Q?) contains its own dimensional
transmutation parameter A, which is related to the normalization a,(M32),
where ag(Myz) = 0.1176 in PDG20 [7] (see also [8]).

f-dependence of the couplant a,(Q?). The coefficients 3; in (2)
depend on the number f of active quarks that change the couplant a,(Q?) at
threshold values Q?c ~ mfc, when some additional quark comes into play at
Q? > ch. Thus, the couplant a, depends on f, and this f-dependence can
be taken into account in A, i.e. it is A/ contributes to the above Egs. (1)
and (5).
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The relationship between Azf and A{ ~! is known up to the four-loop order
[9] in the MS scheme. Here we will not consider the f-dependence of A/,
since we are mainly considering the range of small )? values and therefore
use A= (see, e.g., [10]):

AJ™* =142 MeV, A= =367 MeV. (7)

2. Fractional derivatives

Following |11, 12], we introduce the derivatives (in the (i)-order of of PT)
n gn (1) 2
(@) A2y _ (F1)"das (@)
= 8
@ +1(Q ) n! (dL)n ) ( )
which are very convenient in the case of the analytic QCD (see, e.g., [13]).

The series of derivatives a, (Q?) can successfully replace the corresponding
series of as-degrees. Indeed, each derivative reduces the a, degree, but is
accompanied by an additional S-function ~ a?. Thus, each application of a
derivative yields an additional a,, and thus it is really possible to use series
of derivatives instead of series of a,-powers.

In LO, the series of derivatives a,(Q?) are exactly the same as a”. Be-
yond LO, the relation between a,(Q?) and a” was established in [12,14] and
extended to fractional cases, where n — a non-integer v in [15].

Now consider the 1/L-expansion of d(yk)(Qz) (k =0,1) at LO and next-
to-leading (NLO) approximations

(@) = (D@Y) = 1, a2 = a@) +vi2@). )

SOV N P 1 ho_ 5 d
51/,1(Q ) =1y W = [Zl(V) + lan‘] F, Ry =0 [Zl(V) + @]7 (10)
with Zy(v) = U(v+1) + g — 1, where U(v + 1) and ~p are Euler’s constant
and W-function, respectively. )
Representation (9) of the 5,5721)(622) correction in the form of the R;-
operator is very important and allows us to similarly represent high-order

results for the (1/L-expansion) of analytic couplants.

3. MA coupling

We first show the LO results, and then the NLO ones following our results
(9)-
LO. The LO MA couplant Al(vll)A,u,o has the following form [/



where
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is the Polylogarithm. For v = 1 we recover the famous Shirkov-Solovtsov
results [2]:
1 20
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which can be taken directly for the integral forms (4).
NLO. By analogy with ordinary couplant, using the results (9) we have

H—l

for MA analytic couplantt A . the following expressions:

Aha (@) = A&L,V,1<Q2> ¥ 8 (@) (149)
where AMA is given in Eq. (11) and
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and 51(,21)(622) and Ry are given in Eqs. (9) and (6), respectively.

Hl) ; can be found if v = 1.

The results for the MA analytic couplant A
On Fig. 1 we see that Al(\ﬂ%i (Q?) are very close to each other for i = 0

and ¢ = 1. The differences 6ﬁA7V:17I(Q2) between the LO and NLO results
are nonzero only for Q% ~ AZ.
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Fig. 1. The results for Al(v& =1 O(QQ) 1\/?; =1, 1(QQ) and 51(\/&1/ 1 1(622)



4. MA coupling. Another form

The results (11) and (14) for MA couplants are very convenient in the
range of large and small values of Q2. For Q? ~ A? both parts, the standard
couplant and the additional term (51\?/;11,1(@2) have singularities that cancel
out in sum. Thus, numerical applications of these results may not be so
simple, requiring, for example, some sub-expansions for each part in the
neighborhood of the point Q? = A? . Therefore, here we propose another
form that is very useful for Q* ~ A? and can be used for any value of Q? as
well, except for the ranges of very large and very small Q? values.

LO. The LO MA coupling AMAV(Q2) [2] has also the another form [
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Al(\/gk, — T! (L < 27T Z:l W

where ((v) are Euler (-functions.
The result (17) was obtained in Ref. |!| using properties of the Lerch
function, which can be considered as a generalization of Polylogarithms (12).
For v =1 we have

AGA(D) Z(

where B, are Bernoulli numbers. Using their properties, we have for even
r = 2m and for odd r = 1 + 2[ values

Br+1
r+1
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(18)
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where 62 is the Kronecker symbol. Thus, for Al(vl[)A(Qz) we have (s =1+ 1)
B2 1+1) —L 20+1 B2 _ 25 1
2 1 S
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~ NLO. Now we consider the derivatives of MA coupling constant, i.e.
A%Bx,w shown in Eq. (14), i.e

A1 (QY) =AY (@) + 05,1 (Q%), 0h (@) = RiA: o s

R (21)
where operators Ry are given above in (6). After some calculations we have
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The results for MA couplnts itself can be obtained putting v = 1. More-
over, at the point Ly = 0, i.e. for Q? = A2, we get (I = In(27))

Al =2 00 = (6@ + 1), (21)
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5. Integral representations for MA coupling

As already discussed in Introduction, the MA couplant A (@) is con-
structed as follows: the LO spectral function is taken dlrectly from PT, and
the MA couplant AMA(Q2) is obtained from the dispersion integral (4).

For the v-derivative of A\ (Q?), i.e. A%\’V(QQ), there is the following
equation [15]:

—-1) [ ds
@) =10 [ S (-s2), (25)
where Li;_,(—sz) is the Polylogarithm presented in Eq. (12).

At NLO, Eq. (25) can be extended in two different ways, which will be
shown in following subsections.

Modification of spectral functions. The first possibility to extend
the result (25) beyond LO is related to the modification of the spectral func-
tion:

- (1) [~ ds
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where [16]
i () = 0 () + 6 (s) (27)
and
y=Ins, rY(y) = _1 5@ (y) = b [2yf1(y)+(ﬂ2—y2)fz(y)]
» pt 242 (42 + 72)2 ’
(28)
with 1 11
_ 1 2 2 _r_ 2 Yy
Al =5 Wy +7%), foly) =5 — —arctan (£) . (29)
For the MA coupling constant itself, we have
: +00 s (g)
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Modification of Polylogaritms.  The NLO results (25) can also
be expanded with the R; operators shown in (10), and this results in the
following result:

Al @) = [ S @A =), (31)

where the results for Aﬁ(z) can be found in (16).
The results for MA coupling constant itself can be obtained from (31)
putting v = 1.



6. Conclusions

In this short paper, we have demonstrated the results obtained in our
recent paper [5] (see also [17]). In particular, [5| contains 1/L-expansions
of v-derivatives of the strong couplant as expressed as combinations of the
operators R (10) applied to the LO couplant agl). Using the same operators
to v-derivatives of LO MA couplant Al(vl&, four different representations were
obtained for r-derivatives of MA couplant, i.e. fll(\?Aw in each ¢-order of
PT. All results are presented in [5,0] up to the 5th order of PT, where the
corresponding coefficients of QCD S-function are well known (see [1]). In this
paper, we have limited ourselves to the first two orders in order to exclude
the most cumbersome results obtained for the last three PT orders.

In the case of MA couplant, high-order corrections are negligible in both
asymptotics: @Q? — 0 and Q*> — oo, and are nonzero in a neighborhood of
the point Q% = A2. Thus, in fact, they represent only minor corrections to
LO MA couplant Al(\B\(QQ).
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