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Introduction

The strong coupling constant (couplant) αs(Q
2) obeys the renormaliza-

tion group equation

L ≡ ln
Q2

Λ2
=

∫ as(Q2) da

β(a)
, as(Q

2) =
αs(Q

2)

4π
, as(Q

2) = β0 as(Q
2) , (1)

with some boundary condition and the QCD β-function:

β(as) = − β0a2s
(

1 +
∑
i=1

bia
i
s

)
, β0 = 11− 2f

3
, β1 = 102− 38f

3
, (2)

for f active quark �avors. Really now the �rst �fth coe�cients are exactly
known [1]. In our present consideration we will need only i = 0 and i = 1.

So, already at leading order (LO), where as(Q
2) = a

(1)
s (Q2), we have from

Eq. (1)

a(1)s (Q2) =
1

L
, (3)

i.e. a
(1)
s (Q2) does contain a pole at Q2 = Λ2.

In [2], an e�cient approach was developed to eliminate the Landau sin-
gularity. It is based on the dispersion relation, which connects the new
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analytic couplant AMA(Q2) with the spectral function rpt(s) obtained in the
PT framework. In LO this gives

A
(1)
MA(Q2) =

1

π

∫ +∞

0

ds

(s+ t)
r
(1)
pt (s), r

(1)
pt (s) = Im a(1)s (−s− iε) . (4)

This approach is usually called Minimal Approach (MA) (see, e.g., [3]) or
Analytical Perturbation Theory (APT) [2].

Further APT development is the so-called fractional APT (FAPT) [4],
which extends the principles of construction described above to PT series
starting with non-integer degrees of the couplant. Within the framework of
QFT, such series arise for quantities having non-zero anomalous dimensions.

In this short paper we give an overview of the basic properties of MA
couplants, obtained in [5] using the so-called 1/L-expansion. Note that for
an ordinary couplant, this expansion is only applicable for large Q2 values,
i.e. for Q2 >> Λ2. However, as shown in [5, 6], the situation is completely
di�erent in the case of analytic couplants: this 1/L-expansion is applicable
for all argument values. This is due to the fact that non-leading corrections
to the expansion disappear not only at Q2 →∞, but also at Q2 → 0, which
leads only to nonzero (small) corrections in the region Q2 ∼ Λ2.

Below we consider the representations for the MA couplants and their
(fractional) derivatives obtained in [5,6] in principle, in any PT order. How-
ever, in order to avoid cumbersome formulas, but at the same time to show
the main features of the approach, we limit ourselves to considering only the
�rst two PT orders.

1. Strong couplant

As shown in the Introduction, as(Q
2) obeys the renormalized group equa-

tion (1). When Q2 >> Λ2, Eq. (1) can be solved by iterations in the form
of a 1/L-expansion, which can be represented in the following compact form

a
(1)
s,0(Q

2) =
1

L0

, a
(2)
s,1(Q

2) = a
(1)
s,1(Q

2) + δ
(2)
s,1(Q2) (5)

where

δ
(2)
s,k(Q2) = −b1 lnLk

L2
k

, Lk = ln tk, tk =
1

zk
=
Q2

Λ2
k

. (6)

So, in any PT order, the couplant as(Q
2) contains its own dimensional

transmutation parameter Λ, which is related to the normalization αs(M
2
Z),

where αs(MZ) = 0.1176 in PDG20 [7] (see also [8]).
f-dependence of the couplant as(Q

2). The coe�cients βi in (2)
depend on the number f of active quarks that change the couplant as(Q

2) at
threshold values Q2

f ∼ m2
f , when some additional quark comes into play at

Q2 > Q2
f . Thus, the couplant as depends on f , and this f -dependence can

be taken into account in Λ, i.e. it is Λf contributes to the above Eqs. (1)
and (5).
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The relationship between Λf
i and Λf−1

i is known up to the four-loop order
[9] in the MS scheme. Here we will not consider the f -dependence of Λf

i ,
since we are mainly considering the range of small Q2 values and therefore
use Λf=3

i (see, e.g., [10]):

Λf=3
0 = 142 MeV, Λf=3

1 = 367 MeV . (7)

2. Fractional derivatives

Following [11,12], we introduce the derivatives (in the (i)-order of of PT)

ã
(i)
n+1(Q

2) =
(−1)n

n!

dna
(i)
s (Q2)

(dL)n
, (8)

which are very convenient in the case of the analytic QCD (see, e.g., [13]).
The series of derivatives ãn(Q2) can successfully replace the corresponding

series of as-degrees. Indeed, each derivative reduces the as degree, but is
accompanied by an additional β-function ∼ a2s. Thus, each application of a
derivative yields an additional as, and thus it is really possible to use series
of derivatives instead of series of as-powers.

In LO, the series of derivatives ãn(Q2) are exactly the same as ans . Be-
yond LO, the relation between ãn(Q2) and ans was established in [12,14] and
extended to fractional cases, where n→ a non-integer ν in [15].

Now consider the 1/L-expansion of ã
(k)
ν (Q2) (k = 0, 1) at LO and next-

to-leading (NLO) approximations

ã
(1)
ν,0(Q

2) =
(
a
(1)
s,0(Q

2)
)ν

=
1

Lν0
, ã

(2)
ν,1(Q

2) = ã
(1)
ν,1(Q

2) + ν δ̃
(2)
ν,1(Q2), (9)

where

δ̃
(2)
ν,1(Q2) = R̂1

1

Lν+1
i

=
[
Ẑ1(ν) + lnLi

] 1

Lν+1
i

, R̂1 = b1

[
Ẑ1(ν) +

d

dν

]
, (10)

with Ẑ1(ν) = Ψ(ν + 1) + γE − 1, where Ψ(ν + 1) and γE are Euler's constant
and Ψ-function, respectively.

Representation (9) of the δ̃
(2)
ν,1(Q2) correction in the form of the R̂1-

operator is very important and allows us to similarly represent high-order
results for the (1/L-expansion) of analytic couplants.

3. MA coupling

We �rst show the LO results, and then the NLO ones following our results
(9).

LO. The LO MA couplant A
(1)
MA,ν,0 has the following form [4]

A
(1)
MA,ν,0(Q

2) =
(
a
(1)
ν,0(Q

2)
)ν
− Li1−ν(z0)

Γ(ν)
≡ 1

Lν0
−∆

(1)
ν,0 , (11)
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where

Liν(z) =
∞∑
m=1

zm

mν
=

z

Γ(ν)

∫ ∞
0

dt tν−1

(et − z)
(12)

is the Polylogarithm. For ν = 1 we recover the famous Shirkov-Solovtsov
results [2]:

A
(1)
MA,0(Q

2) ≡ A
(1)
MA,ν=1,0(Q

2) =
1

L0

− z0
1− z0

, (13)

which can be taken directly for the integral forms (4).

NLO. By analogy with ordinary couplant, using the results (9) we have

for MA analytic couplantt Ã
(i+1)
MA,ν,i the following expressions:

Ã
(2)
MA,ν,1(Q

2) = Ã
(1)
MA,ν,1(Q

2) + ν δ̃
(2)
MA,ν,i(Q

2), (14)

where Ã
(1)
MA,ν,i is given in Eq. (11) and

δ̃
(2)
MA,ν,1(Q

2) = δ̃
(2)
ν,1(Q2)− R̂1

(
Li−ν(z1)

Γ(ν + 1)

)
= δ̃

(2)
ν,1(Q2)−∆

(2)
ν,1(z1), (15)

with γE = γE − 1,

∆
(2)
ν,1(z) = b1

[
γELi−ν(z)+Li−ν,1(z)

]
,Liν,1(z) =

∑
m=1

zm lnm

mν
,Li−1(z) =

z

(1− z)2
.

(16)

and δ̃
(2)
ν,1(Q2) and R̂1 are given in Eqs. (9) and (6), respectively.

The results for the MA analytic couplant Ã
(i+1)
MA,ν,i can be found if ν = 1.

On Fig. 1 we see that A
(i+1)
MA,i (Q

2) are very close to each other for i = 0

and i = 1. The di�erences δ
(2)
MA,ν=1,1(Q

2) between the L0 and NLO results
are nonzero only for Q2 ∼ Λ2.

AMA,ν=1,1
(2)

AMA,ν=1,0
(1)

δMA,ν=1,1
(2)

0.00 0.05 0.10 0.15 0.20 0.25
0.0
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1.0
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Fig. 1. The results for A
(1)
MA,ν=1,0(Q

2), A
(2)
MA,ν=1,1(Q

2) and δ
(2)
MA,ν=1,1(Q

2).
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4. MA coupling. Another form

The results (11) and (14) for MA couplants are very convenient in the
range of large and small values of Q2. For Q2 ∼ Λ2

i , both parts, the standard

couplant and the additional term δ
(i+1)
MA,ν,i(Q

2), have singularities that cancel
out in sum. Thus, numerical applications of these results may not be so
simple, requiring, for example, some sub-expansions for each part in the
neighborhood of the point Q2 = Λ2

i . Therefore, here we propose another
form that is very useful for Q2 ∼ Λ2

i and can be used for any value of Q2 as
well, except for the ranges of very large and very small Q2 values.

LO. The LO MA coupling A
(1)
MA,ν(Q

2) [2] has also the another form [4]

A
(1)
MA,ν(Q

2) =
(−1)

Γ(ν)

∞∑
r=0

ζ(1− ν − r) (−L)r

r!
(L < 2π), ζ(ν) =

∞∑
m=1

1

mν
(17)

where ζ(ν) are Euler ζ-functions.
The result (17) was obtained in Ref. [4] using properties of the Lerch

function, which can be considered as a generalization of Polylogarithms (12).
For ν = 1 we have

A
(1)
MA(L) = −

∞∑
r=0

ζ(−r) (−L)r

r!
, ζ(−r) = (−1)r

Br+1

r + 1
(18)

where Br+1 are Bernoulli numbers. Using their properties, we have for even
r = 2m and for odd r = 1 + 2l values

ζ(−2m) = −δ
0
m

2
, ζ(−(1 + 2l)) = −

B2(l+1)

2(l + 1)
, (19)

where δ0m is the Kronecker symbol. Thus, for A
(1)
MA(Q2) we have (s = l + 1)

A
(1)
MA(Q2) =

1

2

(
1 +

∞∑
l=0

B2(l+1)

l + 1

(−L)2l+1

(2l + 1)!

)
=

1

2

(
1 +

∞∑
s=1

B2s

s

(−L)2s−1

(2s− 1)!

)
.

(20)
NLO. Now we consider the derivatives of MA coupling constant, i.e.

Ã
(1)
MA,ν , shown in Eq. (14), i.e.

Ã
(2)
MA,ν,1(Q

2) = Ã
(1)
MA,ν,1(Q

2) + ν δ̃
(2)
MA,ν,1(Q

2) , δ̃
(2)
MA,ν,1(Q

2) = R̂1A
(1)
MA,ν+1,1 ,

(21)
where operators R̂1 are given above in (6). After some calculations we have

δ̃
(2)
MA,ν,1(Q

2) =
(−1)

Γ(ν + 1)

∞∑
r=0

R̃1(ν + r)
(−Lk)r

r!
(22)

where

R̃1(ν + r) = b1

[
γEζ(−ν − r) + ζ1(−ν − r)

]
, ζk(ν) =

∞∑
m=1

lnkm

mν
. (23)
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The results for MA couplnts itself can be obtained putting ν = 1. More-
over, at the point Lk = 0, i.e. for Q2 = Λ2

k, we get (l = ln(2π))

A
(1)
MA =

1

2
, δ(2)s = − b1

2π2

(
ζ1(2) + lζ(2)

)
, (24)

5. Integral representations for MA coupling

As already discussed in Introduction, the MA couplant A
(1)
MA(Q2) is con-

structed as follows: the LO spectral function is taken directly from PT, and
the MA couplant A

(1)
MA(Q2) is obtained from the dispersion integral (4).

For the ν-derivative of A
(1)
MA(Q2), i.e. Ã

(1)
MA,ν(Q

2), there is the following
equation [15]:

Ã
(1)
MA,ν(Q

2) =
(−1)

Γ(ν)

∫ ∞
0

ds

s
r
(1)
pt (s)Li1−ν(−sz) , (25)

where Li1−ν(−sz) is the Polylogarithm presented in Eq. (12).
At NLO, Eq. (25) can be extended in two di�erent ways, which will be

shown in following subsections.
Modi�cation of spectral functions. The �rst possibility to extend

the result (25) beyond LO is related to the modi�cation of the spectral func-
tion:

Ã
(2)
MA,ν,k(Q

2) =
(−1)

Γ(ν)

∫ ∞
0

ds

s
r
(2)
pt (s)Li1−ν(−szk) , (26)

where [16]

r
(2)
pt (s) = r

(1)
pt (s) + δ(2)r (s) (27)

and

y = ln s, r
(1)
pt (y) =

1

y2 + π2
, δ(2)r (y) = − b1

(y2 + π2)2

[
2yf1(y)+(π2−y2)f2(y)

]
,

(28)
with

f1(y) =
1

2
ln
(
y2 + π2

)
, f2(y) =

1

2
− 1

π
arctan

(y
π

)
. (29)

For the MA coupling constant itself, we have

A
(i+1)
MA,k(Q

2) ≡ Ã
(i+1)
MA,ν=1,k(Q

2) =

∫ +∞

0

ds r
(i+1)
pt (s)

(s+ tk)
. (30)

Modi�cation of Polylogaritms. The NLO results (25) can also
be expanded with the R̂1 operators shown in (10), and this results in the
following result:

Ã
(2)
MA,ν,1(Q

2) =

∫ ∞
0

ds

s
r
(1)
pt (s)∆̃

(2)
ν,1(sz1) , (31)

where the results for ∆̃
(2)
ν,1(z) can be found in (16).

The results for MA coupling constant itself can be obtained from (31)
putting ν = 1.
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6. Conclusions

In this short paper, we have demonstrated the results obtained in our
recent paper [5] (see also [17]). In particular, [5] contains 1/L-expansions
of ν-derivatives of the strong couplant as expressed as combinations of the
operators R̂i (10) applied to the LO couplant a

(1)
s . Using the same operators

to ν-derivatives of LO MA couplant A
(1)
MA, four di�erent representations were

obtained for ν-derivatives of MA couplant, i.e. Ã
(i)
MA,ν , in each i-order of

PT. All results are presented in [5, 6] up to the 5th order of PT, where the
corresponding coe�cients of QCD β-function are well known (see [1]). In this
paper, we have limited ourselves to the �rst two orders in order to exclude
the most cumbersome results obtained for the last three PT orders.

In the case of MA couplant, high-order corrections are negligible in both
asymptotics: Q2 → 0 and Q2 → ∞, and are nonzero in a neighborhood of
the point Q2 = Λ2. Thus, in fact, they represent only minor corrections to
LO MA couplant A

(1)
MA(Q2).
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