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Gell-Mann-Low functions can be calculated by means of perturbation theory
and expressed as truncated series in powers of asymptotically small coupling pa-
rameters. However, it is necessary to know there behavior at �nite values of the
parameter and, moreover, their behavior at asymptotically large coupling param-
eters is also important. The problem of extrapolation of weak-coupling expan-
sions to the region of �nite and even in�nite coupling parameters is considered. A
method is suggested allowing for such an extrapolation. The basics of the method
are described and illustrations of its applications are given for the examples where
its accuracy and convergence can be checked. It is shown that in some cases the
method allows for the exact reconstruction of the whole functions from their weak-
coupling asymptotic expansions. Gell-Mann-Low functions in multicomponent �eld
theory, quantum electrodynamics, and quantum chromodynamics are extrapolated
to their strong-coupling limits.

PACS: 44.25.+f; 44.90.+c

Introduction

There exists a general problem, where, because of complexity, the sought
solution can be calculated solely by means of perturbation theory resulting
in truncated asymptotic series in powers of a coupling parameter or some
variable. However, one needs to know the behavior of the solution at �nite
values of the parameter and, moreover, even for asymptotically large values
of this parameter. There are several methods of extrapolation of asymptotic
series to �nite parameters but, it seems, there has been no reliable methods
allowing for the extrapolation to in�nite values of the parameters, when just
a weak-coupling expansion is available and not so many terms of perturbation
theory are known.

Consider, for instance, an expansion in powers of a variable x ∈ [0,∞).
The popular Pad�e approximation [1]

PM/N(x) =
a0 + a1x+ a2x

2 + . . .+ aMxM

1 + b1x+ b2x2 + . . .+ bNxN
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can provide reasonable accuracy for �nite values of x, but for asymptotically
large x, it behaves as

PM/N(x) =
aM
bN

xM−N (x → ∞) .

SinceM andN can be any integers, the large-variable behavior is not de�ned,
being spread, depending onM andN , between−∞ and∞. Such ambiguities
are, actually, common for all methods of extrapolation, because of which the
problem of �nding the behavior of functions in the limit of x → ∞ is so much
complicated.

In the present communication, we describe a general method that makes
it straightforward to extrapolate a weak-coupling expansion, containing just
a few terms, to the whole range of the variable, including the limit x → ∞.
This approach is based on self-similar approximation theory [2�6]. In the
following section, we give a justi�cation of the method we shall use.

1. Method of Self-Similar Approximations

Suppose, we are interested in the solution of a problem that can be treated
only by means of perturbation theory with respect to an asymptotically small
parameter or variable, resulting in an expansion

fk(x) =
k∑

n=0

anx
n (x → 0) . (1)

For concreteness, let us keep in mind a real function of a real variable x ∈
[0,∞). Our goal is to extrapolate this asymptotic expansion to �nite and even
to in�nite values of the variable. As far as the region of large x is the most
di�cult for treatment, at the same time being often the most interesting, we
shall concentrate on this limit.

The basic idea is to consider the transition from one approximation or-
der to another as a motion of a dynamical system with respect to discrete
time played by the approximation order. Then, knowing the law of mo-
tion, it could be possible to study the tendency of the dynamical system for
approaching an e�ective limit. The formation of such a dynamical system
consists of the following steps.

(i) Introduction of control functions. The initially given sequence (1), of
course, cannot represent a stable dynamical system, since such sequences, as
a rule, are divergent. Therefore the formation of a stable dynamical system
has to start with the introduction of control parameters or control functions
governing the sequence convergence. This process can be schematically de-
noted as a transformation

Fk(x, uk) = T̂ [ uk ] fk(x) (2)

enjoying the inverse transformation

fk(x) = T̂−1[ uk ] Fk(x, uk) . (3)
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Control functions have to satisfy one of the two general conditions. Either
they have to govern the transformed sequence convergence, or have to be
de�ned from a training set of empirically known data. The �rst way is
analogous to the introduction of controls for realizing controlled dynamical
systems [7, 8]. The second way is similar to the learning procedure in ma-
chine learning [9,10]. The convergence condition is regulated by the Cauchy
criterion saying that for a given ε there exists kε such that

| Fk+p(x, uk+p)− Fk(x, uk) | < ε (4)

for any k > kε and p > 0. The learning procedure assumes that, for a training
set {zk}, there are the known empirical data {Fk}, for which

Fk(zk, uk) = Fk . (5)

(ii) De�nition of approximation endomorphisms. This requires for the
sequence of approximants Fk(x, uk) to put into correspondence a bijective
sequence of endomorphisms yk(f) acting on the approximation space

A = L{yk(f) : k = 0, 1, 2, . . .} , (6)

which is a closed linear envelope of the approximation endomorphisms. The
latter, by imposing a rheonomic constraint

f = F0(x, uk(x)) , x = xk(f) , (7)

are de�ned as
yk(f) = Fk(xk(f), uk(xk(f))) . (8)

(iii) Formulation of evolution equation. The Cauchy criterion (4), in terms
of the approximation endomorphisms (8), reads as

| yk+p(f)− yk(f) | < ε . (9)

The existence of a sequence limit implies that, with the increasing approxi-
mation order k, one comes to a limiting value

yk+p(f) ' y∗(f) . (10)

The sequence limit, for the approximation endomorphisms, is a �xed point,
satisfying the condition

yk(y
∗(f)) = y∗(f) . (11)

From these conditions, it follows that, in the vicinity of a �xed point, the
self-similar relation

yk+p(f) = yk(yp(f)) (12)

is valid.
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In that way, we have a family of the approximation endomorphsims yk(f),
acting on the approximation space (6), with the approximation order k play-
ing the role of discrete time, and satisfying the self-similar evolution equation
(12). Such a dynamical system is called cascade [11], or in our case this is
an approximation cascade

{yk(f) : Z+ ×A 7−→ A} . (13)

The points

f 7−→ y1(f) 7−→ y2(f) 7−→ . . . 7−→ yk(f) 7−→ y∗k(f) (14)

form the cascade trajectory. Finding a �xed point of the cascade gives us
the sequence limiting value F ∗

k (x, uk). Performing the inverse transformation
results in the self-similar approximant

f ∗
k (x) = T̂−1[ uk ] F

∗
k (x, uk) . (15)

More details on the described techniques can be found in the recent reviews
[12,13].

2. Self-Similar Factor Approximants

Control functions or control parameters can be introduced by means of
di�erent transformations. Presenting expansion (1) in the form

fk(x) =
k∏

j=1

(1 + bjx) , (16)

we employ the fractal transform [14]

Fk(x, {nj}) =
k∏

j=1

x−nj(1 + bjx) . (17)

Following the steps explained in the previous section, we come [15,16] to
the self-similar factor approximants

f ∗
k (x) =

Nk∏
j=1

(1 + Ajx)
nj , (18)

where

Nk =

{
k/2, k = 2, 4, . . .

(k + 1)/2, k = 3, 5, . . .
. (19)

Expression (18) shows that, in order to de�ne a real function f ∗
k (x), either

Aj and nj have to be real or, if they are complex valued, they need to enter
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the factor approximant in complex conjugate pairs, so that their product be
real, taking into account the property

| zα |2 = | z |2ℜα exp{−2(=α)argz} .

Occasional complex approximants are to be discarded.
The parameters Aj and nj are control parameters that can be de�ned

from a training set played by the coe�cients an of the initial expansion (1).
The training conditions are

lim
x→0

1

n!

dn

dxn
f ∗
k (x) = an . (20)

As is clear, these conditions guarantee the asymptotic equality

f ∗
k (x) ' fk(x) (x → 0) . (21)

By comparing ln f ∗
k (x) and ln fk(x), the training conditions (20) can be rep-

resented as the equations

Nk∑
j=1

njA
m
j = Lm (m = 1, 2, . . . , k) , (22)

where

Lm =
(−1)m−1

(m− 1)!
lim
x→0

dm

dxm
ln fk(x) . (23)

Being interested in the large-variable limit, we �nd from (18)

f ∗
k (x) ' Bkx

νk (x → ∞) , (24)

with the large-variable amplitude

Bk =

Nk∏
j=1

A
nj

j (25)

and the large-variable exponent

νk =

Nk∑
j=1

nj . (26)

Equations (22) uniquely de�ne all control parameters for even orders k =
2, 4, . . .. For odd orders of k = 3, 5, . . ., the number of equations k is smaller
than the number k + 1 of the parameters Aj and nj. To make the system
of equations well de�ned, it is necessary to add one more equation. For
this purpose, one can employ the di�-log transformation of expansion (1),
construct the factor approximant for the transformed expansion, and to �nd
the exponent νk, thus getting one more equation [17]. The convergence can
be improved resorting to Borel transformation of series (1).
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3. Zero-Dimensional Field Theory

Before going to complicated problems, whose solutions are not known,
let us �rst consider the simpler cases, where it would be possible to check
the convergence and accuracy of the method. The popular test-horse is the
so-called zero-dimensional φ4 �eld theory, with the generating functional

Z(g) =
1√
π

∫ ∞

−∞
exp(−φ2 − gφ4) dφ , (27)

with the coupling g ∈ [0,∞). The weak-coupling expansion

Zk(g) =
k∑

n=0

ang
n (g → 0) (28)

strongly diverges for any �nite coupling g, since the expansion coe�cients

an =
(−1)n√
π n!

Γ(2n+ 1) (29)

factorially grow with n.
We construct the self-similar factor approximants (18) for expansion (28)

up to the 16-th order and obtain the large-variable behavior of the functional

Z∗
16(g) ' 0.828g−0.187 (g → ∞) ,

whose accuracy is within about 20%. Borel transformation improves conver-
gence and accuracy, yielding in the 14-th order

Z∗
14(g) ' 0.973g−0.242 (g → ∞) ,

whose error is around 3%. This should be compared with the exactly known
asymptotic behavior

Z(g) ' 1.023g−0.25 (g → ∞) .

Although the accuracy of these results may seem to be not extremely
impressive, however it is not as bad as well. In addition, one has to remember
that no information has been used, except the bare weak-coupling expansion
(28). Moreover, calculations prove that even the low-order approximants give
reasonable accuracy.

In any case, we have to accept that some hidden information is contained
in the small-variable expansions of type (1), and self-similar approximants
do decode the hidden information, so that, even having nothing, except the
small-variable expansion, the sought function can be restored for arbitrary
variables, including the most di�cult and important limit of asymptotically
large variables.
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4. One-Dimensional Anharmonic Oscillator

The other touch-stone for calculational methods is the one-dimensional
anharmonic oscillator characterized by the Hamiltonian

H = − 1

2

d2

dx2
+

1

2
x2 + gx4 , (30)

with x ∈ (−∞,∞) and the coupling g > 0. The weak-coupling expansion of
the ground-state energy

Ek(g) =
k∑

n=0

ang
n (g → 0) (31)

strongly diverges because of the factorially growing coe�cients that can be
found in Ref. [18].

Directly applying self-similar factor approximants, we have in 14-th order

E∗
14(g) ' 0.739g0.294 (g → ∞) ,

within the error of 10%. Involving Borel transformation, in the same order,
we get

E∗
14(g) ' 0.688g0.327 (g → ∞) ,

with the error of about 2%. The exact asymptotic behavior is

E(g) ' 0.668g1/3 (g → ∞) .

Again, being based solely on the weak-coupling expansion, self-similar
approximants restore the sought function for all couplings, including asymp-
totically large.

5. Supersymmetric Yang-Mills Theory

In some cases, self-similar approximants can restore the whole function
exactly, provided we can compare the obtained approximants with the known
exact expression [19, 20]. Let us consider the N = 1 symmetric pure Yang-
Mills theory, where the weak-coupling expansion for the Gell-Mann-Low func-
tion reads as [21�24]

βk(g) = − 3g3Nc

16π2

k∑
n=0

bng
2n (g → 0) , (32)

with the coe�cients bn = (Nc/8π
2)n.

The self-similar approximant of second order is

β∗
2(g) = − 3g3Nc

16π2

(
1 + A1g

2
)n1 . (33)
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From the training set of the given bn, we have the control functions

A1 = − Nc

8π2
, n1 = − 1 .

Thus the self-similar factor approximant takes the form

β∗
2(g) = − 3g3Nc

16π2

(
1− Nc

8π2
g2
)−1

, (34)

which coincides with the exact known beta function [21�24]. All higher orders
of the approximants are also reduced to the exact expression (34),

β∗
k(g) = β∗

2(g) (k = 2, 3, . . .) . (35)

6. Multicomponent Field Theory

The weak-coupling expansion of the Gell-Mann-Low function in the N -
component ϕ4 theory, is

βk(g) = g2
k∑

n=0

bng
n (g → 0) , (36)

with the coe�cients within a minimal subtraction scheme, in the six-loop
approximation, given in Ref. [25]. For N = 1, the Gell-Mann-Low function
is known in the seven-loop approximation [26].

The self-similar factor approximants, for N = 1, 2, 3, 4, in the strong-
coupling limit yield

β∗
5(g) ' 1.698g1.764 (N = 0) ,

β∗
6(g) ' 1.857g1.750 (N = 1) ,

β∗
5(g) ' 2.017g1.735 (N = 2) ,

β∗
5(g) ' 2.178g1.719 (N = 3) ,

β∗
5(g) ' 2.340g1.702 (N = 4) . (37)

Using the self-similar Borel summation gives

β∗
4(g) ' 1.42g1.83 (N = 0) ,

β∗
6(g) ' 1.70g1.77 (N = 1) ,

β∗
5(g) ' 2.18g1.67 (N = 2) ,

β∗
5(g) ' 2.50g1.63 (N = 3) ,

β∗
5(g) ' 2.81g1.61 (N = 4) . (38)

No exact results are known for the strong-coupling behavior of this func-
tion. In that sense, the behavior of the beta functions at large g → ∞ is
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a prediction. This prediction uses the self-similar factor approximant that
is trained on the data from the weak-coupling region. This procedure is
somewhat similar to the forecasting made by means of dynamical models
trained on a set of initial data [27�29] and to machine-learning trained on
these data [9, 10].

Some estimates for the value of the coupling g ≳ 1 have been done for
N = 1 in Refs. [30, 31]. They used a Borel-type summation with confor-
mal mapping, including three control parameters chosen so that to make the
Borel transform self-consistent and satisfying the minimal-di�erence condi-
tion. The latter is known to improve convergence, being a part of optimized
perturbation theory [32,33]. The behavior of the beta function for g ≳ 1 was
found to be proportional to gν , with ν ∈ [1.7, 2.2].

It is worth stressing that in the method of self-similar approximants not
merely the strong-coupling limit can be evaluated, as in Refs. [30, 31], but
the whole function is obtained. For example, in the case of N = 1, in the
second and sixth order we have

β∗
2(g) =

3g2

(1 + 9.599g)0.197
,

β∗
6(g) =

3g2

(1 + 5.357g)0.187(1 + 13.72g)0.06(1 + 22.096g)0.003
(N = 1) .

(39)
From the renormalization group equation

µ
∂g

∂µ
= β(g) , (40)

where µ is a scale parameter, it follows that, under ν > 1, when the coupling
rises, so that

β(g) ' Bgν (g → ∞) , (41)

then g increases as

g ' 1

[(ν − 1)B ln(µ0/µ)]1/(ν−1)
(µ → µ0 − 0) . (42)

7. Quantum Electrodynamics

The Gell-Mann-Low function in quantum electrodynamics, in the renor-
malized minimal subtraction scheme, has the weak-coupling �ve-loop expan-
sion

βk(α) =
(α
π

)2
k∑

n=0

bn

(α
π

)n

. (43)

One usually takes into account electrons, although the contributions of lep-
tons with higher masses, such as muons and tau leptons, are neglected. The
coe�cients bn are given in Ref. [34].
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Self-similar factor approximants lead to the strong-coupling limit

β∗
4(α) ' 0.476

(α
π

)2.096 (α
π
→ ∞

)
, (44)

and the self-similar Borel summation results in the strong-coupling behavior

β∗
3(α) ' 0.587

(α
π

)2.12 (α
π
→ ∞

)
. (45)

The QED running coupling is the solution to the renormalization group
equation

µ2 ∂

∂µ2

(α
π

)
= β(α) . (46)

As an initial condition, it is possible to take α at the Z-boson mass,

α(mZ) = 0.007815 , mZ = 91.1876 GeV .

Then the behavior of the coupling in the vicinity of the scale point

µ0 = 8.58× 10260 GeV , (47)

where the beta function sharply increases as

β(α) = B
(α
π

)ν (α
π
→ ∞

)
, (48)

can be written in the form

α ' π

[(ν − 1)2B ln(µ0/µ)]1/(ν−1)
. (49)

Substituting here numerical values gives

α ' 2.743

[ln(µ0/µ)]0.682
(µ → µ0 − 0) . (50)

As is seen, the point of divergence (47) is drastically shifted from the Landau
pole that is of order 1030 GeV [35].

8. Quantum Chromodynamics

The weak-coupling expansion of the Gell-Mann-Low function in quantum
chromodynamics reads as

βk(αs) = −
(αs

π

)2
k∑

n=0

bn

(αs

π

)n (αs

π
→ 0

)
, (51)

where αs is the quark-gluon coupling. The coe�cients, within the minimal
subtraction scheme, can be found in Refs. [36�38]. We keep in mind the
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physically realistic case of Nc = 3 colors and nf = 6 �avors. Bound states
are not considered.

Self-similar approximation results in the strong-coupling behavior of the
beta function

β∗
2(αs) ' − 2.277α2.598

s

(αs

π
→ ∞

)
. (52)

Self-similar Borel summation leads to

β∗
2(αs) ' − 1.89α2.75

s

(αs

π
→ ∞

)
. (53)

The QCD running coupling satis�es the renormalization group equation

µ2 ∂

∂µ2

(αs

π

)
= β(αs) . (54)

As an initial condition, one can take the value of the coupling at the mass of
the Z-boson,

αs(mZ) = 0.1184 , mZ = 91.1876 GeV .

Then the running coupling in the vicinity of µc = 0.1 GeV behaves as

αs ' 0.907

[ln(µ/µc)]0.626
(µ → µc + 0) . (55)

Again, the point of divergence is essentially shifted from the Landau pole
that is close to 0.9 GeV [39].

9. Conclusion

Self-similar approximation theory is presented allowing for the extrap-
olation of functions from weak-coupling expansions to the whole range of
their variables, including the limit of asymptotically large variables tending
to in�nity. The justi�cation of the approach is given. Brie�y speaking, the
approach is based on discovering self-similarity in the coe�cients of the con-
sidered expansion, which then allows for its e�ective extrapolation to higher
orders.

The use of self-similar factor approximants is demonstrated for the prob-
lems, whose exact behavior is known. It is shown that in some cases, e.g.
in the case of supersymmetric Yang-Mills theory, the beta function can be
reconstructed exactly. The strong-coupling extrapolation for the Gell-Mann-
Low functions is accomplished for the N -component φ4 theory, quantum
electrodynamics, and quantum chromodynamics.
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