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The analysis of ALEPH data on femtoscopic correlations of two Λ-hyperons in
Z-boson decays yields a very small source radius of 0.11 ± 0.03 fm if taking into
account only the repulsion due to the Fermi-Dirac quantum statistics. Such a small
source radius is counter-intuitive in the string picture of particle production due
to a moderate string tension of ∼1 GeV/fm. It is shown that the ALEPH data
can be described with an acceptable source radius of >∼ 0.3 fm if taking into
account the repulsive final state interaction between hyperons at distances smaller
than a femtometer. Information on the potential core of two-hyperon interaction
is difficult to obtain otherwise.
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Introduction

In case of a poor knowledge of the two–particle strong interaction, the
correlation measurements can be used to study the latter [1]. Such studies
can essentially improve the information on the interaction involving strange
particles, highly required to understand the properties of neutron stars [2].
Particularly important is the measurement of ΛΛ interaction, to clarify the H-
dibaryon problem and describe the properties of double Λ hypernuclei [3]. In
the context of two-hyperon interaction, we elaborate further the analysis [1]
of the data on two-Λ momentum and spin correlations in Z0 decays obtained
by ALEPH collaboration at LEP [4]. In present analysis, we take into ac-
count that the momentum correlations of parent hyperons are practically
completely transferred to their daughter Λ’s provided that these correlations
are much wider than the decay momenta of ∼ 0.1 GeV/c.

Momentum correlations of identical particles

Consider first the correlation function R of two identical particles on
the absence of their final state interaction (FSI). The R-behaviour at small
relative momenta Q = 2k in pair rest frame is then determined by the sym-
metry requirement of quantum statistics (QS): at Q → 0, the contribution
of the even total spin S is enhanced by a factor of 2, while that of the
odd S vanishes. Assuming sufficiently smooth momentum dependence of the
production amplitude within the region of correlation effect (i.e. a small
space-time extent of the particle emitters as compared with their space-time
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separation) - so called "smoothness" assumption, the R-contribution at a
given total spin S reduces to a square of the symmetrised wave function of
the free motion, ψS

−k(r) = [exp(−ikr) + (−1)S exp(ikr)]/
√

2, averaged over
the vector of the relative distances r between the emission points in pair rest
frame (PRF) [5, 6]:

RS = ρ̃S〈
∣∣ψS
−k(r)

∣∣2〉 = ρ̃S[1 + (−1)S 〈cos(2kr)〉],

R =
∑

SRS = 1 + (
∑

S−even ρ̃S −
∑

S−odd ρ̃S) 〈cos(2kr)〉 ,
(1)

where ρ̃S is the intrinsic probability of the total spin S in the absence of
QS and FSI. As for the "smoothness" assumption, it is certainly justified
for heavy-ion collisions, being however questionable for electro- or hadro-
production processes. In any case, for processes with high numbers of par-
ticipating particles, the neglect of space-time coherence in Eq. (1) can be
justified based on the statistical concept [7, 8].

For ΛΛ system and in the case of independent emission, the intrinsic
singlet (S = 0) and triplet (S = 1) probabilities are determined by the
square of the intrinsic Λ polarisation vector P̃ [6]:

ρ̃s = (1− P̃2)/4, ρ̃t = (3 + P̃2)/4. (2)

Taking into account that Λ-hyperons are momentum-correlated only in a
fraction λ of the pairs, adding further a free normalisation parameter N and
assuming that the r-distribution is described by a spherically symmetrical
Gaussian with dispersion 〈r2〉 = 2r20, i.e. 〈cos(2kr)〉 = exp(−r20Q2), one
arrives at the experimental correlation function:

Rexp = N [(1− λ) + λR] = N
[
1− 1

2
(1 + P2)λ exp(−r20Q2)

]
, (3)

characterised at small Q by a dip of a width 1/r0.
To estimate the pair fraction of Λ’s that are momentum-correlated due

to QS, one can use the data on the production rates in e+e− collisions at Z0

mass [9] to get the fraction 0.445 ± 0.026 of pairs of directly produced Λ’s;
the remaining pairs contain at least one Λ from Σ0 → Λγ or Ξ→ Λπ decays.
Since the correlation Q-width of ∼ 2 GeV/c (Fig. 1) is much larger than the
Σ0- and Ξ-decay momenta of ∼ 0.1 GeV/c, the parent momentum correla-
tions are practically completely transferred to the daughter Λ’s. Therefore,
the Λ’s from pairs of identical parents also contribute to the QS correlation
function, increasing the correlated fraction to λ = 0.50 ± 0.03. Here we as-
sume a universal r-distribution for all hyperon pairs and take into account
that the effect of the Coulomb FSI for Ξ−Ξ− pairs is negligible at Q > 0.1
GeV/c. Taking further into account the experimental pair purity of 86% [4],
the momentum-correlated fraction due to QS is decreased to λ = 0.43±0.03.
As for the Λ polarisation, it appears to be less than 10%, except for a small
fraction of very energetic Λ’s [10], so that the contribution of the polarisa-
tion squared in the intrinsic singlet and triplet probabilities in Eqs. (2) is
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Fig. 1. The ALEPH two–lambda correlation function [4] and example fits: the
curve - pure QS fit according to Eq. (3) at fixed zero polarisation and λ = 0.43

(r0 = 0.08 ± 0.03 fm); the histograms - fits with λ = purity = 0.86 and the FSI
modelled by a three-range Gaussian s-wave potential [3] with the singlet potential
V s(γ = 0.5463) reproducing the NSC97e one [18]; the triplet potential V t = V s

(dashed histogram, r0 = 0.26 ± 0.02 fm) and V t = V s(γ = −2) with the widened
repulsive part, (full histogram, r0 = 0.39± 0.04 fm).

less than 1% and can be neglected; these probabilities then become equal to
1/4 and 3/4 as for a statistical spin mixture.

The ALEPH fit results [4], r0 = 0.11 ± 0.02stat ± 0.01sys and λ = 1.18 ±
0.18stat ± 0.08sys, point to a problem of a simple fit with the neglected FSI.
First, the fitted fraction λ of correlated pairs is ∼ 4 standard deviations
higher than the estimated value of 0.43±0.03; as a result, the fit with a fixed
λ = 0.43 yields the unsatisfactory χ2/ndf = 41.7/18 (see Fig. 1). Second,
the fitted source size parameter r0 of ∼ 0.1 fm appears to be too small in the
string model due to a separation of the identical hyperons by a state with
anti-hyperon quantum numbers, corresponding to a separation by a string
length of & 1 fm in case of the on-mass-shell state. It indicates a need for the
FSI repulsion between any hyperons, including the Λ-parents, with a width
of the corresponding momentum anti-correlation much larger than 1/r0.

Final State Interaction

In first approximation, the two-particle FSI can be taken into account like
in β-decay, substituting the wave function of the free motion in Eq. (1) by the
solution of the corresponding scattering problem viewed in the opposite time
direction - so the negative sign of the vector k; also, when taking into account
possible inelastic transitions, the detected channel should be considered as
the entrance one [11]. A similar generalisation of Eq. (1) was done in [12] to



4

account for mutual FSI of the protons emitted with non-relativistic momenta.
However, contrary to t = 0 in β-decay, the time separation t in PRF may

be quite substantial in multiparticle production. It can be taken into account
in corresponding Bethe-Salpeter amplitude, which vanishes at large |t| and
reduces to the wave function on condition [6] |t| � mr2. This condition
is usually fulfilled for particles with sufficiently high mass m, like kaons or
baryons; even for pions, the substitution of the Bethe-Salpeter amplitude by
the wave function usually leads to the error in the strong FSI contribution
to the correlation function less than 10% [13].

In heavy ion collisions, r0 can be considered larger than the range d of
the strong interaction potential. The strong FSI contribution ∆RFSI

S to the
correlation function is then independent of the actual potential form [14] and,
at small Q, it is determined by the s-wave scattering amplitudes fS(k) [6].
In case of |fS| > r0, the FSI contribution is of the order of |fS/r0|2 and
dominates over the effect of QS. In the opposite case, the sensitivity of the
correlation function to the scattering amplitude is determined by the linear
term fS/r0.

The two-Λ correlations have been measured in Au+Au and p+p(Pb)
collisions by STAR [15] and ALICE [16] collaborations, respectively. Both
the STAR and ALICE fits prefer the s-wave singlet scattering lengths f s(0)
less than ∼ 1 fm in magnitude but differ in sign. The STAR fit yields
a negative sign, allowing for a possible bound state, while the ALICE fit
prefers the positive sign, in agreement with potential models describing the
double-Λ hypernuclei, though still leaving a small door for a negative sign.

A possible reason for the discrepancy may be the oversimplified treatment
of residual correlations of daughter Λ’s from Σ0- and Ξ-decays. In ALICE
analysis, they are considered flat, while in STAR analysis, they are somewhat
arbitrarily parametrised by a Gaussian. Also, in proton collisions, the extent
of the correlation up to Q of several hundreds MeV/c and the small source
size r0 of 1.2 − 1.4 fm may invalidate the assumptions of the s-wave FSI
dominance and independence of ∆RFSI

S on the potential form; though the
latter assumption was found to be fulfilled on a percent level [16], one may
expect a significant violation of the former one at Q > 100− 150 MeV/c (see
below).

In e+e− collisions at LEP, r0 < d, so the two–particle FSI is sensitive to
the form of the interaction potential, particularly - to the presence of the po-
tential core. Since now the correlation effect extends up to k = Q/2 of several
GeV/c, the waves with orbital angular momentum up to L ∼ 15 contribute
to ∆RFSI

S and the calculation is more complicated, requiring the knowledge of
the corresponding potentials to solve the "relativistic" Schrodinger equation
for the non-symmetrised radial wave functions ψS

k,L(r); in this equation, the
masses are substituted by the energies so that it coincides with the Klein-
Gordon equation for the potentials much smaller than the total pair energy.

For the assumed spherically symmetric Gaussian source and taking into
account only elastic transitions with the L, S conservation, the respective
strong FSI contributions to the correlation functions of non-interacting iden-
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tical (R in Eq. (1)) and non-identical (R = 1) particles are

∆RFSI
S = 2ρ̃S

∑
(L+S)−even(2L+ 1)〈[[ψS

k,L(r)]2 − [jL(kr)]2)〉,

∆RFSI
S = ρ̃S

∑
L(2L+ 1)〈[[ψS

k,L(r)]2 − [jL(kr)]2)〉,
(4)

where jL(x) are the spherical Bessel functions.
To model two-hyperon potentials, we have used a three-range Gaussian

s-wave potential with the negative height of the intermediate-range Gaussian
multiplied by a scale parameter γ [3], well reproducing various Nijmegen po-
tentials [17, 18] generated by one-boson exchanges with the couplings fixed
by SU(3)-symmetry. All these potentials contain repulsive core or repul-
sive regions, generated by vector-boson exchanges. From such example R-
calculations and corresponding fits of the two-Λ correlation function, one
may conclude: (i) at r0 < 1 fm, the Q-dip generated by a repulsive potential
region is much wider than 1/r0; (ii) the anti-correlation is widened due to the
contribution of higher L-waves and - the relativistic effect at Q > 2 GeV/c;
(iii) the anti-correlation of identical and non-identical hyperons is practically
the same at Q > 1/r0 for potentials with similar repulsion, thus allowing one,
as a first approximation, to fit the ALEPH data with a universal two-hyperon
correlation function and λ equal to pair purity; (iv) the fitted r0 increases
with increasing the effective heights and the upper boundaries rs,tB of the re-
pulsive regions of the singlet and triplet potentials, with the χ2/ndf vs rtB(γ)
approaching a wide plateau ∼ 1 at rtB > 1 fm (γ < −0.2); e.g. for the singlet
NSC97e potential [18], rsB = 0.75 fm (γ = 0.5463), the fitted r0 = 0.26±0.02
fm (χ2/ndf = 25.1/18) and 0.39 ± 0.04 fm (χ2/ndf = 16.1/18) for rtB = rsB
and rtB = 1.75 fm (γ = −2), respectively (Fig. 1).

Spin correlations

For spin–1/2 particles, the information on the system size and the two–
particle interaction can be achieved also with the help of spin correlation
measurements using as a spin analyser either the asymmetric (weak) particle
decay [19,20] or the particle scattering [21,22]. Since these techniques require
no construction of the uncorrelated reference sample, they can serve as an
important consistency check of the standard correlation measurements.

Particularly, for Λ→ pπ− decays, characterised by the decay asymmetry
parameter α = 0.642, the distribution of the cosine of the relative angle θ
between the directions of the decay protons in the respective Λ rest frames,

dN

d cos θ
=
N

2

[
1 + α2

(
4

3
ρt − 1

)
cos θ

]
, (5)

allows one to determine the triplet fraction

ρt = Rt/R. (6)
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Fig. 2. The ALEPH two–Λ triplet fraction [4] diluted by daughter Λ’s from hyperon
decays. The curve and histograms correspond to those in Fig. 1, they are calculated
according to Eqs. (6), (7) with λ′ = 0.445.

This fraction vanishes at smallQ and approaches ρ̃t
.
= 3/4 with the increasing

Q, thus demonstrating a similar dip at small Q as the correlation function
R = Rs +Rt. Taking into account that Λ-hyperons are spin-correlated only
in a fraction λ′ of the pairs, the experimental triplet fraction

ρexpt =
3

4
(1− λ′) + λ′ρt, (7)

where ρt is given in Eq. (6). Since the possible parent spin correlations are
practically not transferred to the daughter Λ’s, λ′ coincides with the fraction
of directly produced Λ’s, λ′ = 0.445 ± 0.026. Note that this fraction is not
multiplied by pair purity since the ALEPH angular distributions are corrected
for the acceptance and impurity effects using Monte Carlo simulations.

The ALEPH triplet fraction [4] is compared with the example calculations
in Fig. 2. It is consistent with the value of 3/4, except for a suppression at
Q < 2 GeV/c, in agreement with the theoretical expectations according to
Eqs. (6), (7) and example calculations presented in Fig. 1. Despite rather
large errors, the triplet fraction data somewhat prefer a larger extent of the
triplet repulsion potential (the solid histogram). Even better agreement of
the pure QS calculation (the curve) is invalidated by a failure to describe the
correlation function (Fig. 1).

Conclusions

The ALEPH data on ΛΛ momentum and spin correlation provide a strong
evidence on the essential repulsive regions in the two-hyperon strong inter-
action potentials. The repulsion is solving the problems due to: (i) a sub-
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stantial fraction of Λ’s from hyperon decays; (ii) an unacceptably small ra-
dius of the Λ source if neglecting FSI. Further quantification of two-hyperon
strong interaction potentials requires to account for their differences, a more
complicated spin structure (including spin-orbit and tensor interaction) and
presence of coupled channels. A complementary analysis of two-hyperon
correlation functions in electro (hadro)-production processes and heavy-ion
collisions can reduce the uncertainties.
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