

Booster high-frequency accelerating station preamplifier protection system

Andrey Troitskii JINR, VBLHEP

The reason for creating a system of protection by the starting frequency of the accelerating field was an accident at the preamplifier of the booster's RF station. It took a long time to fix and repair, so it was decided to develop a protective mechanism.

For efficient operation, the protection must provide a high frequency measurement speed, and a good response speed to the accident.

Causes of accidents on the preamplifier.

The main element of the preamplifier are field-effect transistors, which are the ones that fail.

In the absence of a field derivative, there is a current drop in the amplifier tubes, and further low voltage at the resonator. Comparing the high reference voltage and the low voltage on the resonator results in a high gain on the regulated amplifier and preamplifier. The high output voltage on the preamplifier transistors causes them to fail.

Figure 2. FET - IXZ2210N50L

Block diagram and exterior view.

Block diagram and exterior view.

Frequency protection circuit diagram.

Testing. How does it work?

по начальной частоте

Testing. How does it work?

Figure 8. Oscillogram of the correct frequency.

Test Results. Modulator relay.

Figure 9. Front panel of the modulator..

Figure 10. Modulator top view.

Test Results. Modulator relay.

Figure 12. Modulator relay.

Figure 9. Front panel of the modulator..

Figure 10. Modulator top view.

Test Results. Modulator relay.

ЦИКЛ FOTOB

 \odot

ВКЛ.

ВЫКЛ.

VPE3

Vp кВ

APY PPy

VCET. 1.2VPES.

МОДУЛЯТОР

Figure 9. Front panel of the modulator..

выход

C

БЛОК ВНЕШ

VPE3

VCET.

ЗАПУСК

VCET.

Voltage protection on the grid amplifier tube.

→ 2X1

100.0 x

9X1

100.0 x

100.0 x

25V

C18 = 100.0 x 25V

KT3102

R52

╢─

R47

D7

KT3102

R48

KT3102

0.33MKd

Figure 15. Part of the modulator circuit.

R44

-<u>510</u> C15

C16

-15V

+

50.0 x

25V

C21

KC182A 1ĸ

R42

6.2ĸ

R43

Vсетки.

-5V

Опорное V сетки

R54

R41

R111 U

1.5ĸ

4X1

D8

R55

3K

R40

6.8ĸ

п.п. 🕇 6.8к

12 31

APY

PPy

R53

РРУ

выход

выход

3.II.)

 $\square \oplus$

Іфид. п.п.

Voltage protection on the grid amplifier tube.

Figure 14. Modulator of the RF booster station.

Voltage protection on the grid amplifier tube.

The results of the work done:

- The protection of expensive equipment in case of abnormal or emergency situations on two fronts has been improved.
- ➢ Further we plan to check physically on the installation in test mode, and then already to operate in accelerating sessions.

Thanks for your attention!

Questions for the speaker.