

Updates in PWG4 Electromagnetic signals

D.Peresunko and C. Yang for the PWG4

PWG4: goals and organization

- Conveners: Chi Yang, Dmitri Peresunko
- Physics objectives
 - Neutral meson rapidity, spectra, flow
 - Direct photon rapidity, spectra, flow, interferometry
 - Dileptons: mass distributions, spectra
 - Antineutrons
- Talk overview
 - Recent theoretical predictions
 - Software development
 - Dilepton analysis
 - Neutral meson analysis

Recent theoretical predictions (Dmitry Blau)

- UrQMD in hydro mode (bag EOS)
- prompt + thermal direct photons
- «Direct Photon Production in Heavy-Ion Collisions at NICA Energies», D. Blau, D. Peresunko, Phys.Part.Nucl. 52 (2021) 4, 681-685

NICA

Comparision Au+Au vs Bi-Bi (Dmitry Blau)

NICA

Absolute yield in Bi-Bi is smaller, but slope and relative yield is similar to Au+Au collisions

 $R_{\gamma} = \frac{N_{\gamma}^{incl}}{N_{\gamma}^{decay}} \sim 1.06 \implies \text{possible to access}$

Software development

- V0 finder
 - selects V0 either using cuts or via machine learning
 - Move V0 finder to standalone class
 - mpdroot/physics/evPID/MpdV0Maker.h
 - □ Fills branch with V0s per event
 - mpdroot/physics/evPID/MpdV0.h
 - So far V0 finder optimized for conversion V0s
 - Do we need combine functionality in existing finder used to produce Λ , K_s^0 ?

- Neutra meson/photon analysis class mpdroot/physics/photons/MpdConvPi0.h
 - consumes prepared V0s, clusters and produce histograms for analysis
 - was used in Train 1 and Train 2 scans

Dilepton analysis (Sudhir)

- Reduce combinatorial background by rejecting pairs from π⁰/η Dalitz decays
- More details in Sudhir's talk

V0 finder: input variables

- vZ: event vertex z coordinate
- ntr: number of tracks
- pt: V0 pt
- eta: V0 eta
- ncl1, ncl2: number of TPC clusters
- chi2: chi2 of the Kalman fit
- cpa: cosine of angle between momentum and dirction from secndary vertex to primary vertex
- cospsi: cosive of agle of pair orientation w.r.t. magnetic field
- asym1, asym2: track momentum asymmetry
- alpha, qt: Armenteros-Podalansky variables
- mass: m_{ee} pair mass
- R, Z: conversion radius and z coordinate

NICA

Variables correlation

Correlation Matrix (background)

Most of variables are independent. Some correlated, e.g. event vZ and conversion Z, asymetry and alpha. Some correlations not obvious: ncl vs asym, qt and R. To be optimized

Classifiers outputs

Some classification algorithms provide clear separation of signal and background (random pairs)

Operation response curves

D.Peresunko, PWG4 status

Cut efficiencies and optimal cut value

BDT optimal cut

Cut efficiencies and optimal cut value

(NICA)

Use cut maximizing significance in the case 1/1000 S/Bg V0s eresunko, PWG4 status

Conversion shows the largest Signal/Bg ratio, calorimeter — smallest Minor dependence of Signal/Background on rapidity

Peak position and width dependense

- Calorimeter
 - No pT dependence
 =>correct non-linearity
 - Minor y-dependence of resolution => small detoriaration of resolution at large z
- Conversion
 - Peak position shifted to higher m
 - □ No rapidity dependence
- Hybrid
 - Width not between calo and Conv => look at peak shape

NICA

Calo

Conv

Hvbrid

2.5

Calo

Conv

0.5

Hybrid

p_(GeV/c)

Effieincy

- Occupancy
- mass/width

π^0 analysis summary

- Software produces reasonable results
 - $\hfill\square$ Expected mass and width dependence on p_T and y
- Strong photon conversion electron E-loss contributions
 - Reduce with PID cuts (reduced efficiency)
 - Will be a problem in photon interferometry analysis
- Strong cluster overlap contribution
 - Use core energy
 - Reduce with dispersion PID
 - Optimize clusterization algorithm

Hvbrid

π^0 flow (O. Golosov)

- Code implemented in the analysis class mpdroot/physics/photons/MpdConvPi0.h
- Output of train 2 is analyzed
- v_n(m) is fit with function

 $v(m_{\gamma\gamma}) = \frac{N_{S}(m_{\gamma\gamma})v_{s} + N_{BG}(m_{\gamma\gamma})v_{BG}}{N_{S}(m_{\gamma\gamma}) + N_{BG}(m_{\gamma\gamma})}$

π^0 flow (O. Golosov)

- Pion flow can be extracted for all 3 reconstruction techniques
- Flow estimeted w.r.t. true reaction plane
- MC (solid line) do not contain long-lived resonance decays and deviates from the measured flow (to be checked)
- Filled symbols: true pairs

Conclusions

- Analysis software is being developped
- Basic analyses started
 - revealed some points in ECAL reconstruction requiring optimisation
- Much more analyses in pipeline
 - $\square \quad \pi/\eta \rightarrow \gamma(e^+e^-)$
 - $\Box K_s{}^0 \rightarrow \pi^0 \pi^0$
 - $\square \quad \pi \to \pi^0 \gamma, \ \pi^0 \pi^+ \pi^-$
 - $\Box \quad \eta' \to \eta \pi^+ \pi^-$

 - Dielectron continuum, LVMs
 - Single e_{HF}
 - □ Fluctuations $<\pi^0, \pi^{\pm}>$

```
• ....
```

