Collider NICA status and plans of its first Operation Evgeny Syresin on behalf of Accelerator division

NICA: <u>Nuclotron based lon Collider fAcility</u>

1111

3. Ускорители и Коллайдеры тяжёлых ионов

Basic information

- The Collider ring 503.04 m long has a racetrack shape and is based on double-aperture (top-to-bottom)
- Superconducting magnets with maximum dipole field 1.8 T;
- Magnetic rigidity = $45 \text{ T} \cdot \text{m}$;
- Ion kinetic energy range from 1 GeV/u to 4.5 GeV/u for Au79+;
- Energy of polarized deuterons is 6 GeV/u, protons 12 GeV;
- Vacuum in a beam chamber: 2×10⁻⁹ Pa;
- Zero beam crossing angle at IP;
- 9 m space for detector's allocations at IP;
- Average luminosity 10^{27} cm⁻²·s⁻¹ for gold ion collisions at $\sqrt{s_{NN}} = 11$ GeV.
- The luminosity in the polarized mode is up to 10^{32} cm⁻²·s⁻¹.
- Technological run at cryomagnetic system testing– Summer 2024
- Commissioning Autumn 2024
- First beam run the end of 2024

Ring circumference, m	503,04									
Number of bunches	22									
RMS bunch length, m	0.6									
Beta-function in the IP, m		0.6								
Betatron tunes, Qx/Qy	9	9.44/9.44								
Ring acceptance	40 π⋅mm⋅mrad									
Long. acceptance, $\Delta p/p$	±0.01									
Gamma-transition, γ_{tr}	7.084									
Ion energy, GeV/u	1	3	4.5							
lon number per bunch, 10 ⁹	0.28	3	2.98							
RMS Δp/p, 10 ⁻³	0.63	1.29	1.69							
RMS beam emittance, h/v, (unnormalized), π·mm·mrad	1.1/1.07	1.1/0.95	1.1/0.81							
Luminosity, 10 ²⁷ cm ⁻² s ⁻¹	0.01	1	1							
IBS grow the time, sec	300	1000	3100							

NICA Stage II-a (basic configuration):

- 1. Injector chain: KRION => Booster => BTL BN => Nuclotron
- 2. BTL Nuclotron => Collider
- 3. Collider equipped with
- RF-1 (barrier voltage system) for ion storage
- RF-2 : 4 cavities per ring instead (100 kV RF amplitude)
- 1 channel of S-cooling per ring (cooling of longitudinal deg. of freedom)

Result: 22 bunches of the length $\sigma \sim 2$ m per collider ring that 5e25 cm⁻²·s⁻¹, ion kinetic energy E=2.5 GeV/n

NICA Stage II-b (full configuration):

Collider

- + RF-3 systems in the project version
- + S-cooling (transverse)
- + E-cooling

Result: 22 bunches of the length $\sigma \sim 0.6$ m per collider ring that 1e27 cm⁻²·s⁻¹, ion kinetic energy E=4.5 GeV/n

Booster-Nuclotron-Collider beam injection/extraction systems

Beam Parameters

	Booster	Booster	Nuclotron	Nuclotron	Collider
	injection	extraction	injection	extraction	injection
lons	Au ³¹⁺	Au ³¹⁺ / Au ⁷⁹⁺ (stripping)	Au ⁷⁹⁺	Au ⁷⁹⁺	Au ⁷⁹⁺
Energy of ions, MeV/u	3.2	578	572	1000 ÷	1000 ÷
				3800	3800
Maximum magnetic	1.64	25	10	14 ÷ 38.5	14 ÷ 38.5
rigiaity, i m					
lon number	2·10 ⁹	1.5·10 ⁹	1.3·10 ⁹	1·10 ⁹	1·10 ⁹

Project ion intensity 2.10⁹ Bi³⁵⁺ per pulse

<mark>Достигнутые величины</mark> Ar¹⁶⁺ - 5·10⁸ ions per pulse Xe²⁸⁺ - 2·10⁸ ions per pulse Bi³⁵⁺ - 2·10⁸ ions per pulse

First Collider beam run is planed with Xe²⁸⁺ и Bi³⁵⁺ ions

Xe ion charge distribution at KRION exit

HILAC status Stable and safe HILAC operation during with Ar¹³⁺ and Xe²⁸⁺ beams

At RFQ exit I=100 μ A (yellow line). At HILAC exit I=65 μ A at ion pulse duration 22 μ S (red line), about 70% at this pulse of target ions ¹²⁴Xe²⁸⁺. Number of ions accelerated in HILAC at energy 3,2 MeV/n is about 1×10⁸.

Project HILAC intensity ²⁰⁹Bi³⁵⁺ at energy 3,2 MeV/n is about 1.8×10⁹ per pulse.

Further development

Realization of multy cycle injection and

upgrade of KRION-6T

Booster Beam current

Parametric beam current transformer signal (DC mode)

16.01.2023 17:50:47 Z/A=28/124 Binj = 810 Гс

Booster-Nuclotron run - September 2022 - February 2023 for BM@N baryonic matter researches. Booster acceleration of ions¹²⁴Xe²⁸⁺ to energy 204,7 MeV/n, where they were stripped up to bare nucleus end extracted in Nuclotron.

 \checkmark <u>6.10⁸ elementary charges ~ 2.5.10⁷ of Xe²⁸⁺</u>

Electron Cooling in Booster

- Electron cooling was demonstrated with the RF voltage present as it is required for beam accumulation
- □ Measurements support the accumulation rate of about 10 Hz

Beam current dependence on time with and without electron cooling. Rf harmonic number – 5. Cooling cycle duration - 200 ms. Electron beam current 50 mA. Electron beam voltage 1.83 keV

Electron cooling of ¹²⁴Xe28+ at electron beam current 50mA and energy 1,830 keV

Image of electron beam at Nuclotron entrance without cooling and with cooling.

At electron cooling the rate of events in BM@N was increased by 2 times.

Beam Accumulation at electron cooling

- □ Beam accumulation happens in the longitudinal plane at Booster injection
 > 4 µs bunch 8 µs revolution time
 □ Each new injection happens after the previous one is cooled to the core
 - Expected injection rate 10 Hz
 - ➤ 10 15 injections will require
 - Total cycle duration ~5 s
- The permanently present 1st RF harmonic weakly affects large amplitude particles
- For small amplitude particles the cooling force will be intentionally reduced to avoid overcooling

- To avoid anticoolig we need to match well the injection magnetic field and e-beam energy
 - > It happens since for large $\Delta p/p$, dF/dt changes sign after reaching the peak

An increase of ion accumulation intensity by a factor of 5 is planned. However application of electron cooling is restricted by ion bunch space charge effects at a level of .10⁹ ions of

Ion beams in Nuclotron

- Anno 12 - Anno 12	Solo -		
Parameter	Project	Status (June 2018)	
Ma×. magn. field, T	2	2 (1.7 T routine)	
B-field ramp, T/s	1	0.8 (0.7 routine)	
Accelerated particles	p- ∪, d↑	p↑, d↑, p - Xe	Nuclotron since operation 1993
Max. energy, GeV/u	12 (p), 5.8 (d) 4.5(¹⁹⁷ Au ⁷⁹⁺)	5.6 (d, ¹² C), 3.6 (⁴⁰ Ar ¹⁶⁺)	1 1
Intensity, ions/cycle	1E11(p,d), 2E9 (A > 100)	d 4*10 ¹⁰ (2*10 ¹⁰ routine), ⁷ Li ³⁺ 3*10 ⁹ ¹² C ⁶⁺ 2*10 ⁹ ⁴⁰ Ar ¹⁶⁺ 1*10 ⁶ ⁷⁸ Kr ²⁶⁺ 2*10 ⁵ ¹²⁴ Xe ⁴²⁺ 1*10 ⁴	78Kr+26 beam acceleration (3,2 GeV/u) RUN #55

Intensity of xenon ion beam was increased by 3 orders of magnitude at Booster-Nuclotron run 2022-2023

Beam injection system (Nuclotron)

 Lambertson magnet
 11.2021
 4-rod kicker
 11.2021
 Testing & mounting
 Decem. 2021
 HILAC-Booster-Nuclotron run December 2021 January 2022

SALAN DUNA

6F2

Nuclotron extraction system

Start configuration (magnetic rigidity up to 29 T·m)

Full configuration (magnetic rigidity up to 38.5 T·m)

Application of one extraction Lambertson magnet permits to reach the maximal kinetic ion energy 2.5 GeV/n in first Collider beam runs

Kickers of Nuclotron and Collider

	Extraction from Nuclotron	Injection into Collider
Effective length, m	2×1.3	3×1.3
Max. field, T	0.13	0.055
Bending angle, mrad	8.4	5
Pulse duration, ns:		
rise	550	200
plateau	200	200
fall	600	200
Current amplitude, kA	27	11

Extraction kicker – in production, injection kickers – start of fabrication, construction should be finished in middle of 2024

Collider beam injection septa

Effective length, m	2.5
Max. magnetic field, T	0.42
Bending angle, mrad	24
Gap, mm	30
Septum thickness, mm	3
Current, кА	50
Pulse duration, μs	10

Septum cryostat module

Nuclotron-Collider beam transport channel

Parameters of pulsed magnet elements

Magnetic element	Number	Effective length, m	Max. magnetic field (gradient), T (T/m)	
Long dipole	21	2	1.5	
Short dipole	6	1.2	1.5	
Quadrupole Q10	22	0.353	31	
Quadrupole Q15	6	0.519	31	ASPER
Steerer	33	0.466	0.114	Marine Marine and

Magnets delivery in JINR in February 2021

Nuclotron-Collider transfer line was contracted by France firm Sigma Phi

JINR can not obtain part of ready equipment: power supplies, beam diagnostics, vacuum chambers and support stands.

JINR restarts construction and production of this equipment in Summer 2023. We plan to produce this equipment in middle of 2024

Nuclotron-based Ion Collider fAcility

The magnetic system: regular period

	Parameter	Dipole	Lens
	Number of magnets (units), pcs	80	46
	Max. magnetic field (gradient)	1.8 T	23.1 T/m
	Effective magnetic length, m	1.94	0.47
	Beam pipe aperture (h/v), mm	120 /	70
	Distance between beams, mm	32	0
Азотные металлорукава и зставки ВВК	Overall weight, kg	1670	240
Quadrupole unit Dipole unit		e unit	

Nuclotron-based Ion Collider fAcility

The magnetic system: magnets

Title	Nes.	Fin.	Prod. %
2×ap Dipole units	80+1	84	100
2×ap Quadrupole units	46	46	100
4×ap Quadrupole units	12	2	80
BI vertical 1×ap dipole units	4	0	80
BI vertical 2×ap dipole units	4	0	80

Quadrupole units

Final focusing quadrupoles BI vertical 1x dipole units

23

- One RF1 and four RF2 cavities were mounted. Installation of other four RF2 in the end of 2023
- RF3 cavities and amplifier in BINP. Installation in the end of 2024

Nuclotron-based Ion Collider fAcility							5	C	h	16	9(d	U		9	S)
								2023	3							20	024												202	25	
	IV	V	/ VI	VI	IV	III IX		X)	KI	XII	Т	Ш	Ш	IV	V	VI	VII	VIII	IX	Х	XI	XII	1	Ш	П	I)	/	V	VI	VII	VIII
Magnets			Proc	duct	ion	and t	est	ing				As	seml	oling																	
Magnetic system			Asse	emb	ling	g and t	est	ing								Festir	g														
Cryostat System			Asse	emb	ling	g and t	est	ing																							
Beam diagnostic system																															
RF system			RF	1+R	RF2	ring's	par	t									RF3	ring'	s par	t											
E-Cool				Ma	in s	oleno	id																								
Beam pipe vacuum system																															
Injecting/Dump		۵	Design	ing							Production Assembling and mount				unti	ng															
Magnetic field correction system																															
Main Power Supplies																															
Water cooling system			(Circ	ulat	tion p	art					wit	h co	oling																	
Synchronization system																															
Quench protection system																															
S-Cool																															
Additional Power Supplies								F	Pro	duc	ion				As	semb	ling	ring	part												
	Assembling and technological runs Run without beam (Stage II-a).										m Commissioning with beam																				
	023																														

Коллайдер NICA: завершение изготовления оборудования, монтаж и планы первых сеансов с пучком.
Галимов А.Р., ОИЯИ, ЛФВЭ

Program of the September 2024 Collider technological run

- I. Collider cryomagnetic tests:
- Tests of Power supplies on an equivalent load
- Tests of energy evacuation switchers
- Vacuum of isolation volume
- High vacuum of beam chamber
- Operation of control system
- Magnet system cryogenic cooling
- Thermometry tests
- Operation of quench protection and evacuation system
- Formation of magnetic cycle, power supplies tuning
- Corrector system tuning

Nuclotron-based Ion Collider fAcility

The first Collider run with beam

NICA Stage II-a (basic configuration):

- 1. Injector chain: KRION => Booster => BTL BN => Nuclotron
- 2. BTL Nuclotron => Collider
- 3. Collider equipped with
- RF-1 (barrier voltage system) for ion storage
- RF-2 4 cavities per ring (100 kV RF amplitude)

Result: 22 bunches of the length $\sigma \sim$ 2 m per collider ring that 2e25 cm⁻²·s⁻¹. Maximum kinetic ion energy 2.5 GeV/n

	Вос	ster	Nucl	otron	Collider
	Injection	Extraction	Injection	Extraction	
E	3,2 MeV/u	530 MeV/u	523 MeV/u	1,5-2,5 GeV/u	1,5-2,5 GeV/u
N	5·10 ⁸	3.5*10 ⁸	2.5*10 ⁸	2*10 ⁸	2*10 ⁸ (at injection) 4*10 ⁹ (at RF1 accumulation and formation of 22 bunches by RF2)
В _d , Тл	0,1	1,6	0,4	<1,2	<1.2

Dependence of luminosity on number ions per buch at different energies (1) 4.5 GeV/u (2) 3GeV/u, (3) 2 GeV/u, (4) 1 GeV/u.

Increase of luminosity for project value

Electron Cooling System of NICA Collider

HV Electron Cooler for NICA Collider Design and construction at BINP Installation at NICA in 2023-2024

RF3 Bunching Number of RF3 cavities per ring -8

RF3 station in BINP, installation 2025

Dependence of bunch length and momentum spread on time at cooling time of 100 s. Installation in Nuclotron of two Lambertson magnets to reach project energy 4.5 GeV/u

