



# **Dielectron measurements with MPD**

#### **Sudhir Pandurang Rode\***

Joint Institute for Nuclear Research (JINR), Dubna

In Collaboration with Prof. Itzhak Tserruya (WIS, Israel)

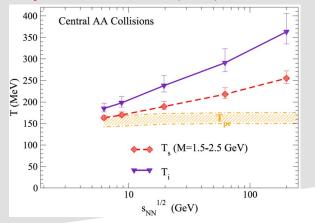
**XII MPD Collaboration Meeting** 

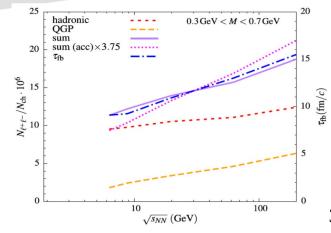
Vinča Institute of Nuclear Sciences, Belgrade, SERBIA

October 4-6, 2023

### **Outline**




- Motivation and Pre-requisite
- Principle study: Possible improvement in the CB reduction.
  - Ideal Pluto and UrQMD with no detector effect
  - Realistic case with Detector effect
- Implementation: Improvement with current reconstruction algorithm.
  - Pair analysis in UrQMD
- Efforts for further improvement
- Conclusion and Outlook

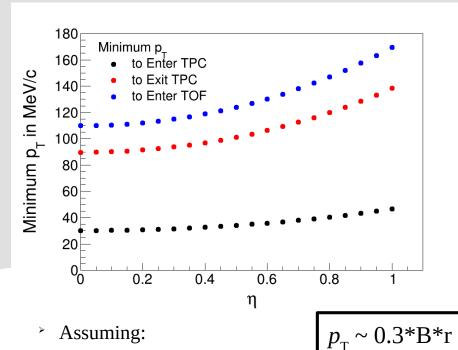

### **Dileptons**

- Penetrative probe of hot and dense nuclear matter.
- Advantages: Interacts electromagnetically → Large mean free path compared to system size → Provide information at the time of their production.
- <u>Challenges</u>: Inherit large combinatorial background from Dalitz as well as conversions.
- Intermediate Mass Region: Excitation function of the inverse-slope parameter,  $T_s$  (M = 1.5 2.5 GeV).
- Closely related to the initial temperature T<sub>i</sub> of the fire ball: "thermometer" for the heavy-ion collisions.
- Low Mass Region: Sum of QGP and hadronic contributions proportional to fireball lifetime: "chronometer" for heavy-ion collisions










# **Motivation and Pre-requisite**

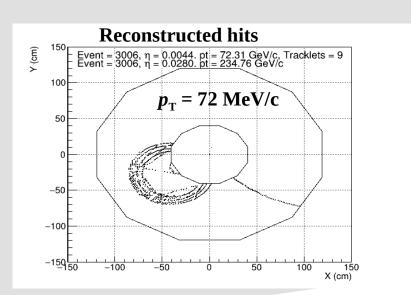


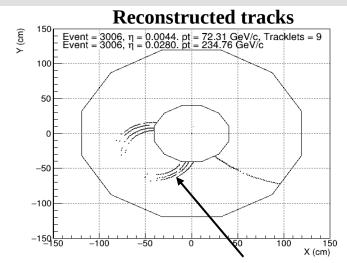
| i                     | Dilepton channels            |                                  |
|-----------------------|------------------------------|----------------------------------|
| 1                     | Dalitz decay of $\pi^0$ :    | $\pi^0 \to \gamma e^+ e^-$       |
| 2                     | Dalitz decay of $\eta$ :     | $\eta  ightarrow \gamma l^+ l^-$ |
| 3                     | Dalitz decay of $\omega$ :   | $\omega 	o \pi^0 l^+ l^-$        |
| 1<br>2<br>3<br>4<br>5 | Dalitz decay of $\Delta$ :   | $\Delta \to N l^+ l^-$           |
| 5                     | Direct decay of $\omega$ :   | $\omega \rightarrow l^+ l^-$     |
| 6<br>7                | Direct decay of $\rho$ :     | $ ho  ightarrow l^+ l^-$         |
| 7                     | Direct decay of $\phi$ :     | $\phi \rightarrow l^+ l^-$       |
| 8                     | Direct decay of $J/\Psi$ :   | $J/\Psi  ightarrow l^+ l^-$      |
| 9                     | Direct decay of $\Psi'$ :    | $\Psi'  ightarrow l^+ l^-$       |
| 10                    | Dalitz decay of $\eta'$ :    | $\eta' \to \gamma l^+ l^-$       |
| 11                    | pn bremsstrahlung:           | $pn \rightarrow pnl^+l^-$        |
| 12                    | $\pi^{\pm}N$ bremsstrahlung: | $\pi^{\pm}N \to \pi N l^+ l^-$   |

Major source of combinatorial background:  $\pi^0$  Dalitz decays (and conversions in beam pipe) where only one track is reconstructed whereas its partner is not.



#### Assuming:


TPC inner radius: 40.3 cm


TPC outer radius 119.5 cm

TOF inner radius 146.5 cm

# Low $p_{T}$ track reconstruction with current algorithm

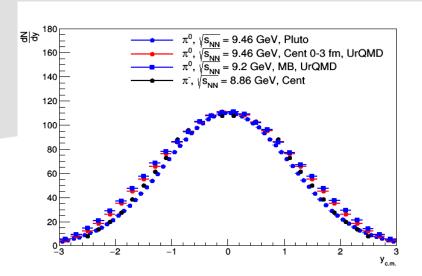


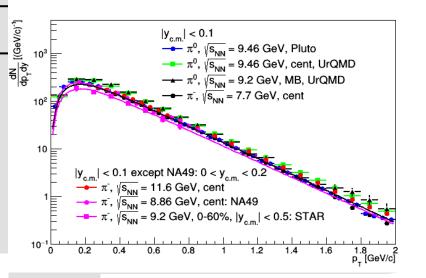




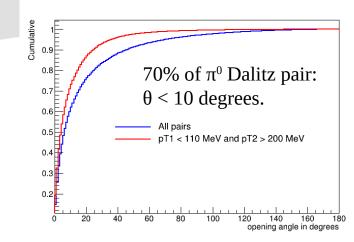
Partially reconstructed spiral track

- With current track reconstruction algorithm, low  $p_{\rm T}$  tracks are not reconstructed properly even though full hit information is available in the detector for tracks with  $p_{\rm T} \gtrsim 30$  MeV/c.
- Power of the low pt tracks that enter the TPC ( $p_T > 30 \text{ Mev/c}$ ).





# **Principle study using Pluto and UrQMD**

- $\rightarrow$  Pluto: single  $\pi^0$  Dalitz decay.
- UrQMD: Min. Bias BiBi at 9.2 GeV


### **Comparison with Data**

- Analysis maybe sensitive to the shape of the pT and rapidity spectra.
- > pT spectra of pions in Pluto is rescaled to match with the data.
- Rapidity spectra is reasonably reproduced without rescaling.









# Strategy: Ideal scenario with no detector effect



- Divide the acceptance into fiducial and veto areas.
  - In this study, we use a very conservative fiducial region, |y| < 0.3 and veto is 0.3 < |y| < 1.0.
- Assume that electron is fully reconstructed if it has a pt > 110 MeV and it is reconstructed in TPC only if it has a 30 < pt < 110 MeV.
- Assume signal ( $N_s$ ) is proportional to the number of Dalitz pairs with both legs  $p_T > 200 \text{ MeV}$  and within |y| < 0.3
- Assume background ( $N_b$ ) is proportional to the square of the single tracks originating from Dalitz decay where one leg has pT > 200 MeV in |y| < 0.3 and other leg is not reconstructed.
- Absolute values of S/B in these slides have no meaning, however, the relative difference between them is meaningful.
- > <u>Close TPC cut:</u> Assume ideal detector and that an electron with 30 < pt < 110 MeV and within an opening angle of 10 degrees of a reconstructed track is the partner of a Dalitz decay

# Possible improvement in S/B



 $S = N_s = No of Dalitz pair in |y| < 0.3 with both legs pt > 200 MeV$ 

 $B = (N_b)^2 = (No \text{ of single tracks from Dalitz in } |y| < 0.3 \text{ with pt} > 200 \text{ MeV} \text{ with partner anywhere in fid. or}$ 

# veto **Pluto**

Acc. |y| < 0.3 S/B = = 323 (absolute value has no meaning)

**Maximum gain in S/B** (assuming partner with pT > 30 MeV and opening angle <10 deg is fully recognized):

#### **UrQMD**

Acc. |y| < 0.3 S/B = 142

**Maximum gain in S/B** (assuming partner with pT > 30 MeV and opening angle <10 deg is fully recognized):

$$S/B = 692 \sim factor 5 improvement$$

# Strategy: Realistic scenario with detector



- Now with more realistic case, with detector effect.
- UrQMD: Request 11 production: Min. Bias BiBi at 9.2 GeV
- Pluto using MPD ROOT used for request 11:  $\pi^0$  Dalitz decay.
- Applied track selection and PID cuts.
- |Vz| < 50 cm
- > Nhits > 39
- $\rightarrow$  DCA < 3 $\sigma$
- -1 < TPC nSigma\_e < 2σ</li>
- $\rightarrow$  |TOF beta| < 2 $\sigma$
- > TPC-TOF matching 2σ for dφ and dz.
- Close TPC cut: Electron pool without TOF (TPC only tracks) and opening angle < 10 degrees.</p>

# Possible improvement in S/B



 $S = N_s = No of Dalitz pair in |y| < 0.3 with both legs pt > 200 MeV$ 

B =  $(N_b)^2$  = (No of single tracks from Dalitz in |y| < 0.3 with pt > 200 MeV with partner anywhere in fid. or veto **Pluto** 

Acc. 
$$|y| < 0.3$$
 S/B = = 229

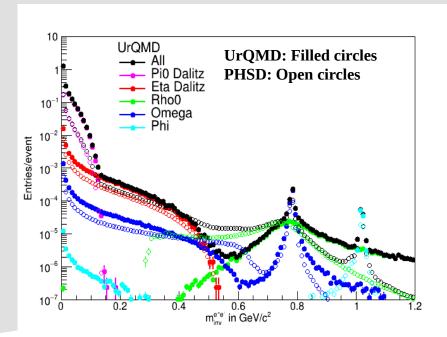
**Maximum gain in S/B** (assuming partner with pT > 30 MeV and opening angle <10 deg is fully recognized):

$$|y| < 0.3$$
 S/B = 1080 ~ factor 5 improvement

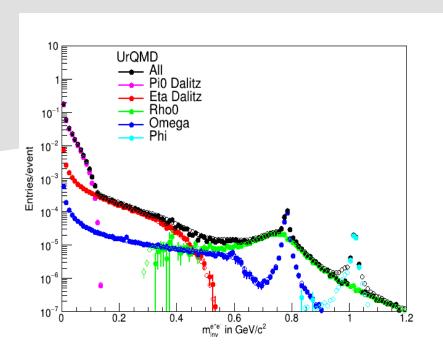
#### **UrQMD**

Acc. |y| < 0.3 S/B = 101

**Maximum gain in S/B** (assuming partner with pT > 30 MeV and opening angle <10 deg is fully recognized ):


$$|y| < 0.3$$
 S/B = 8308 ~ factor 8 improvement

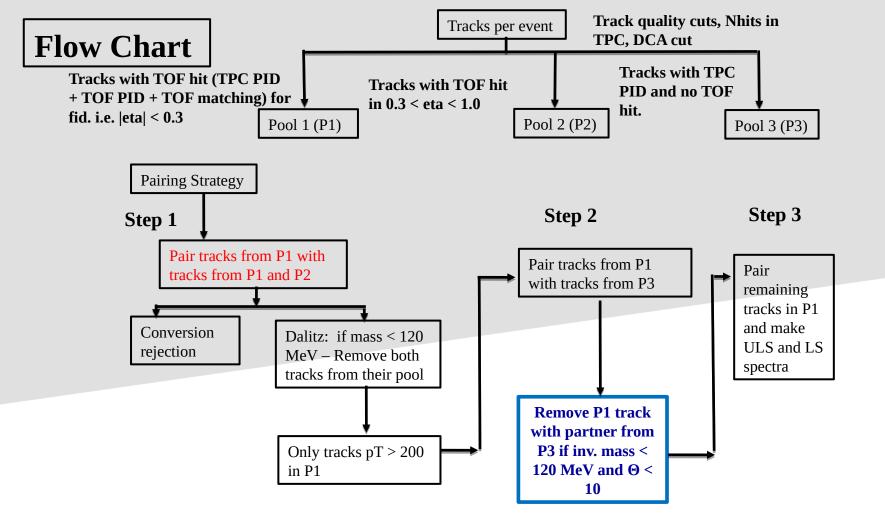



# Implementation

### **Di-electron cocktail**






- Shapes and Multiplicities are different in PHSD and UrQMD.
- Need to scale down to PHSD.



# **Strategy: Pair analysis**



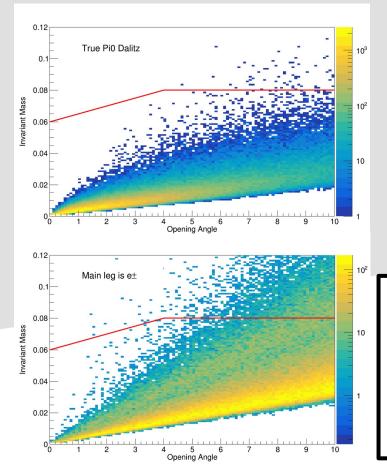
- Three electron pools:
  - Pool-1 for fully reconstructed tracks in fiducial area (|eta| < 0.3)
  - Pool-2 for fully reconstructed tracks in veto area 0.3 < eta < 1.0.</p>
  - Pool-3 with TPC only tracks.
- Step 1 -No further pairing: Tracks belonging to fully reconstructed  $\pi^0$  Dalitz are tagged and not used for further pairing.
- \* Step 2 Close TPC cut: Track from Pool-1 in an event is paired with tracks from Pool-3 in the same event and both tracks are <u>removed</u> as a potential Dalitz pair if they have  $M_{inv} < M_{cutoff} MeV/c2$  and opening angle < 10 degrees.
- Step 3 Rest of the tracks with pt > 200 MeV from Pool-1 are paired among themselves to build ULS and LS pair spectra.

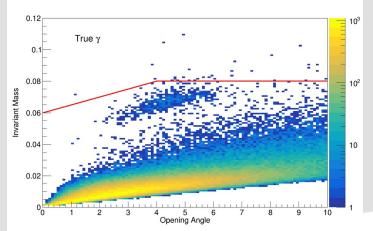


# **Selection cuts: Pair analysis**



#### Request $25 \rightarrow 36M$ events:

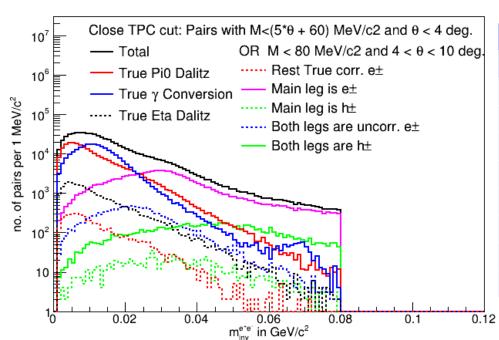

- 1. Fully reconstructed tracks: Pool 1
  - 1) |Vz| < 100 cm.
  - 2) DCA  $x,y,z < 3\sigma$ .
  - 3) Nhits > 39
  - 4) TPC nSigma -2 to 2 sigma at p = 0 and -1 to 2 sigma for p > 800 MeV/c
  - 5) TOF nSigma -2 to 2 sigma
  - 6) TOF matching -2 to 2 sigma
  - 7) Limiting the eta acceptance of the reconstructed track to 0.3
- 2. Cuts on Partner: Pool 2
  - 1) Same as Pool 1 except in 0.3 < Eta < 1.0
- 3. Cuts on Partner for Close TPC Cut: Pool 3
  - 1) |Eta| < 2.5, Nhits > 10
  - 2) DCA > 3.5 sigma
  - 3) |TPC nSigma| < 2 sigma, Those tracks who DO NOT Matched in TOF within 2 Sigma (TPC ONLY).


- STEP 1: No further pairing: Pairing between Pool 1 and 2
  - 1. <u>Dalitz rejection</u>: pairs with M < 120 MeV/c2
  - 2. Pairing: **pT** > **200 MeV/c**

- > STEP 2: Close TPC Cut: Pairing between Pool 1 and 3
  - 1. Dalitz rejection: **No further pairing of pairs with M** < **2D cut**
  - 2. Pairing: **pT** > **200 MeV/c**

# **Invariant mass vs Opening angle: Pairs after STEP 1**

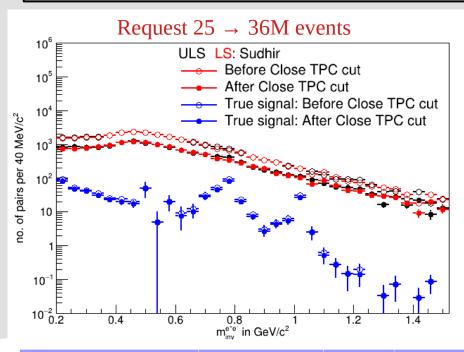


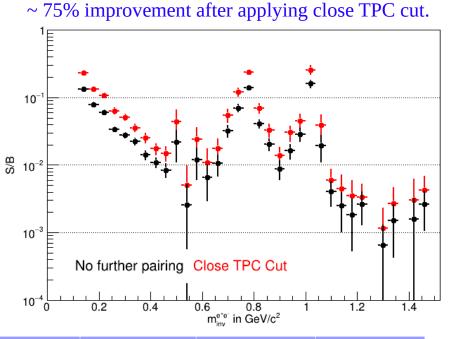





- Two-dimensional invariant mass selection criteria → Avoid signal loss (as much as possible) → subject to tuning.
- Due to sensitivity and statistics, effect of this cut may not be visible.

# **Sources of removed pairs in Close TPC Cut**




| Composition                                | # pairs | %    |
|--------------------------------------------|---------|------|
| Total                                      | 673118  | 100  |
| True gamma conversions                     | 258256  | 38.4 |
| True Pi0 Dalitz pairs                      | 251892  | 37.4 |
| Main track is electron and other is hadron | 113104  | 16.8 |
| True Eta Dalitz pairs                      | 25961   | 3.9  |
| Both tracks are electron but uncorrelated  | 11086   | 1.7  |
| Both are hadrons                           | 7657    | 1.1  |
| Rest True correlated pairs                 | 4327    | 0.6  |
| Main track is hadron and other is electron | 835     | 0.1  |

# S/B: Pair analysis







| $0.2 < M < 1.5 \text{ GeV/c}^2$ | Signal (S)   | S loss | LS(B)           | CB reduc.   | S/B           | $S/\sqrt{(S+B)}$ |
|---------------------------------|--------------|--------|-----------------|-------------|---------------|------------------|
| Before Close TPC Cut            | 644.5+/-34.4 |        | 26285.2+/-145.3 |             | 0.024+/-0.001 | 3.07             |
| After Close TPC Cut             | 575.9+/-33.7 | 11%    | 13317.7+/-103.7 | 1.97 factor | 0.043+/-0.003 | 5.41             |



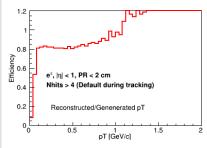
What's next?

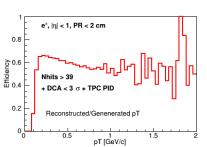
### Remaining tracks after Close TPC Cut

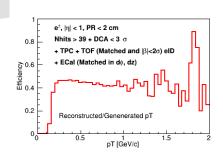


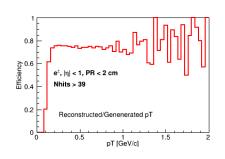
Trying to understand the origin of remaining background after close TPC cut.

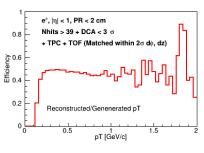
| Total reconstructed tracks after close TPC cut:                                      | 1.69268e+06   |  |  |  |  |
|--------------------------------------------------------------------------------------|---------------|--|--|--|--|
| Below: Only Conversion and $\pi^0$ Dalitz sources are considered                     |               |  |  |  |  |
| a. Track has Partner with pT < 35 MeV ( $ \eta $ < 2.5):                             | 419595 (~25%) |  |  |  |  |
| b. Track has Partner inside TPC i.e. $35 < pT < 100$ MeV ( $ \eta  < 2.5$ ):         | 580428 (~34%) |  |  |  |  |
| c. Track has Partner with pT > 110 MeV ( $ \eta $ < 2.5):                            | 266075 (~16%) |  |  |  |  |
| Track is hadron:                                                                     | 102041 (~6%)  |  |  |  |  |
| Rest (Signal ( $\eta$ , etc), conversion, $\pi^0$ Dalitz whose partner outside TPC,) | 324536 (~19%) |  |  |  |  |

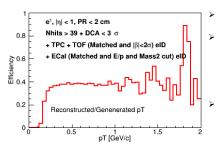

- ✓ Is **b.** reflecting inefficiency of the current tracking algorithm for low p<sub>T</sub> tracks? Need expert help to improve the low-p<sub>T</sub> tracking reconstruction.
- Additional and independent venue:
  - ✓ Improve the overall eid efficiency using Machine Learning techniques (both TPC Only and TPC+TOF+ECal)  $\rightarrow$  Will help in <u>improving the signal as well as S/B</u>.

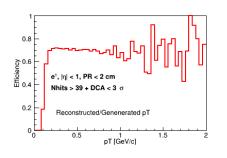


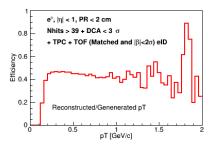


# **PID using Machine Learning**


#### Step-by-step reconstruction efficiency of electron using Selection cuts







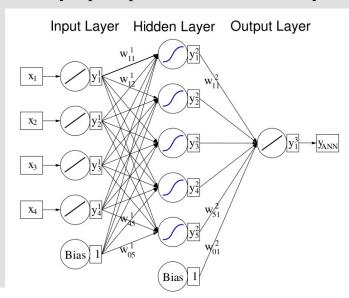






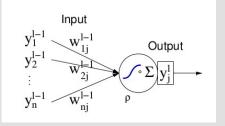

#### Req 25: UrQMD BiBi at 9.2 GeV

- Efficiency drops significantly when track selection cuts are applied:
- No of hits in the TPC < 39
- DCA < 3 sigma
- TPC dEdX eID
- TOF Matching 2σ
- TOF beta 2σ
- **Ecal Matching**
- Ecal eID (E/p and Mass<sup>2</sup>)


This necessitates the use of Machine Learning approach.

Numerator: Reconstructed spectrum of e<sup>+/-</sup> tracks with cuts. <u>Denominator</u>: Generated spectrum of e<sup>+/-</sup> tracks from event generator (irrespective of whether track is "reconstructible" or not) → What's thrown into the detector Reconstructible: Particles should have MC points in the TPC (should reach the TPC)  $\rightarrow$  Not a well-defined category. 23

# **Neural Network: Multi-Layer Perceptrons (MLP)**




#### Multilayer perceptron with one hidden layer.



The neurons are organized in layers and only allowing direct connections from a given layer to the following layer

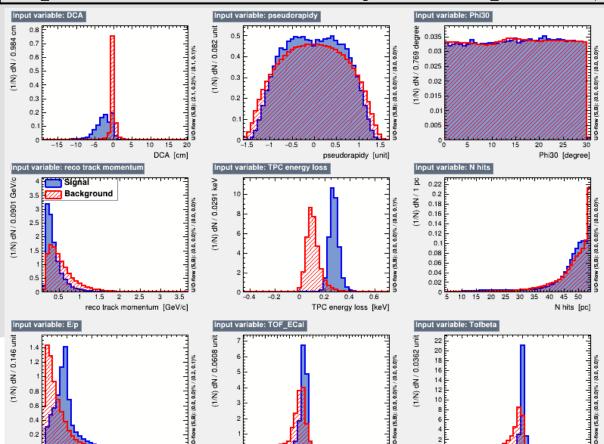
#### Response function



The neuron response function  $\rho$ maps the neuron input  $i_1, \ldots, i_n$ *i* onto the neuron output

#### synapse function ( $\kappa$ ) and neuron activation function ( $\alpha$ )

$$\kappa: \ (y_1^{(\ell)},..,y_n^{(\ell)}|w_{0j}^{(\ell)},...,w_{nj}^{(\ell)}) \to \begin{cases} w_{0j}^{(\ell)} + \sum\limits_{i=1}^n y_i^{(\ell)} w_{ij}^{(\ell)} & \textit{Sum}, \\ w_{0j}^{(\ell)} + \sum\limits_{i=1}^n \left( y_i^{(\ell)} w_{ij}^{(\ell)} \right)^2 & \textit{Sum of squares}, \\ w_{0j}^{(\ell)} + \sum\limits_{i=1}^n |y_i^{(\ell)} w_{ij}^{(\ell)}| & \textit{Sum of absolutes}, \end{cases}$$


$$\alpha: x \to \begin{cases} \frac{1}{1 + e^{-kx}} & Sigmoid \\ \frac{e^x - e^{-x}}{e^x + e^{-x}} & Tanh, \\ e^{-x^2/2} & Radial. \end{cases}$$

 $\alpha: x o \begin{cases} rac{1}{1+e^{-kx}} & \textit{Sigmoid}, \end{cases}$  The neuron response  $\frac{e^x - e^{-x}}{e^x + e^{-x}} & \textit{Tanh}, \end{cases}$  function  $\rho$  often separated into  $\frac{e^{-x^2/2}}{e^{-x^2/2}} & \textit{Radial}. \end{cases}$  into these functions:

$$\rho = \alpha \circ \kappa$$

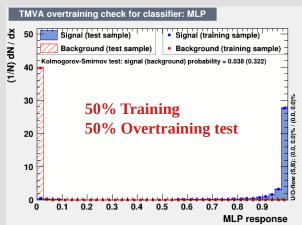
# Input variables: Multi-Layer Perceptrons (MLP)



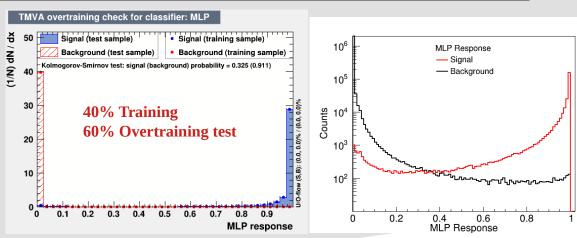


0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

TOF\_ECal [unit]


E/p [unit]

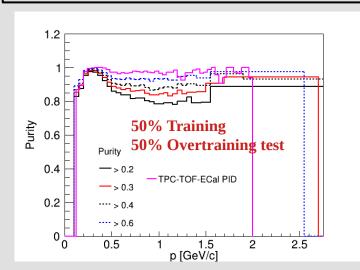
0.4 0.6 0.8

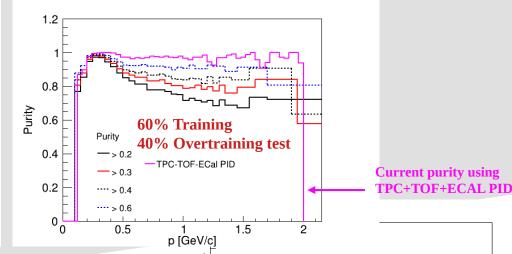

- Request 25 production is used.
- Only <u>negative particles</u> are studied at the moment.
- Electrons (e<sup>-</sup>) with Monte Carlo hit in TOF and Ecal: (if(mcTr → GetPdgCode() == 11 AND (mcTr → GetNPoints(kTOF) == 0 OR mcTr → GetNPoints(kECAL) == 0)) continue;).
- For <u>non-electrons</u> no requirement → all.
- $\rightarrow$  Total Signal  $\rightarrow$  PDG = 11  $\rightarrow$  346728.
- Background → PDG != 11 → 19728150.
- Variables: p, dEdx, Hits, E/p (<10),</li>
   beta from TOF (>0.2) and Ecal,
   DCA, eta (<1.6) and phi30 (>0).

### **Network performance**



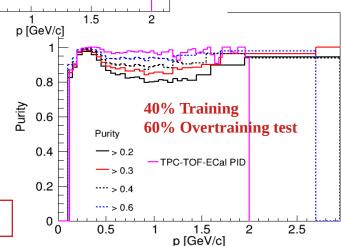




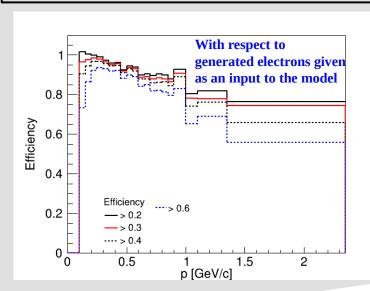

- Training sample divided into two sub-samples for training and checking the overtraining (3 combinations tried).
- Models corresponding to three cases are trained reasonably well.
- The Kolmogorov Smirnov test used for overtraining test: provides a p-value equal to the statistical probability that two samples are drawn from the same distribution.
- The smaller the p, the greater the overtraining. As a rule of thumb, it is recommended to try to reduce overtraining if p < 0.01, especially if the separation is visibly poorer for the testing samples than for the training samples.

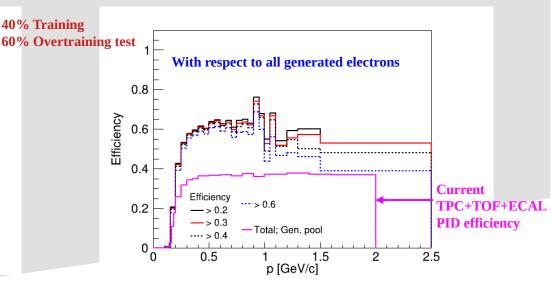
# Electron (e<sup>-</sup>) purity: MLP and Selection cuts









- Purity: Numerator → Reconstructed momentum distribution of e<sup>-</sup> with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + |eta| < 1.</p>
- Denominator → Reconstructed momentum distribution of all tracks (e<sup>-</sup> with Monte Carlo hit in TOF and Ecal) within MLP response cut (0.2,0.3 etc) |eta| < 1.</p>


Observed similar efficiency and almost similar purity in all 3 cases.



# Electron (e-) efficiency: MLP and Selection cuts







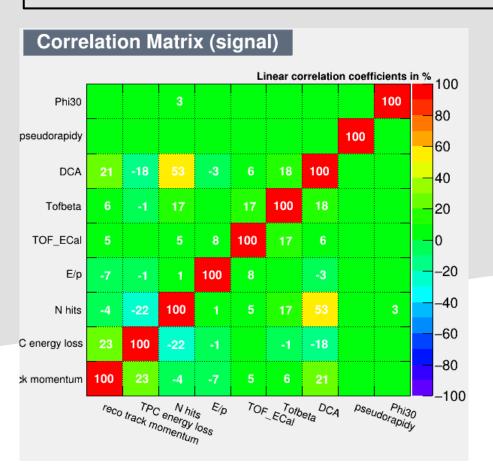
- Efficiency: Numerator → Reconstructed momentum distribution of e with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + Production radius < 2 cm + |eta| < 1.
- Denominator → Generated momentum distribution of ewith Monte Carlo hit in TOF and Ecal within Production radius < 2 cm + |eta| < 1.</p>

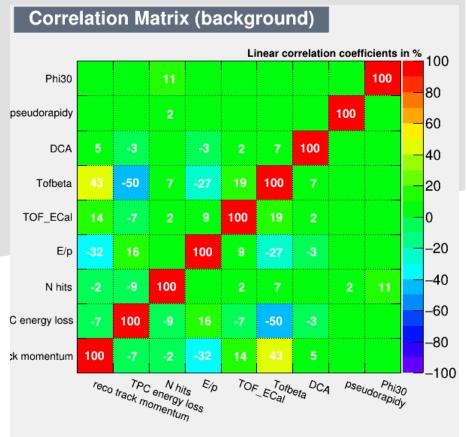
- Efficiency: Numerator → Reconstructed momentum distribution of e<sup>-</sup> with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + Production radius < 2 cm + |eta| < 1.</p>
- Denominator → Generated momentum distribution of e<sup>-</sup> within Production radius < 2 cm + |eta| < 1</li>
   This is obtained by taking average of total spectrum (e<sup>±</sup>+e<sup>-</sup>)/2

Overall, the Machine Learning tool seems to be helping in improving the efficiency keeping purity to the maximum.

# **Summary**

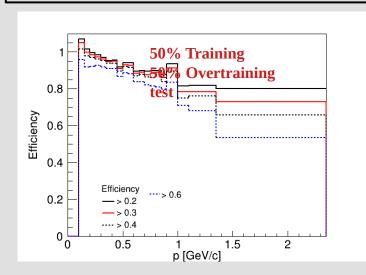


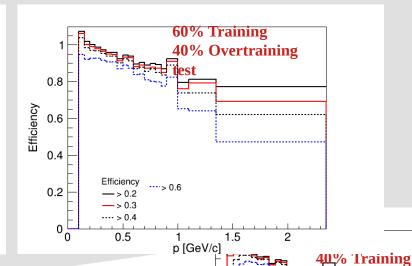

- 1) Using a close TPC track cut, a significant improvement in the S/B can be obtained.
- 2) Current tracking reconstruction algorithm brings about ~70-80% improvement.
- 3) Improving the tracking algorithm for low pt tracks could bring a larger improvement. Need a tracking expert on board.
- 4) Further improvement: currently, the e-id involves many (about 7) independent one-dimensional cuts. Use of Artificial Neural Networks or Machine Learning techniques hints at the improvement in the electron identification efficiency.



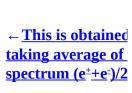

# **BACK-UP**

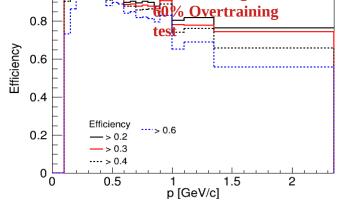
#### **Correlation**



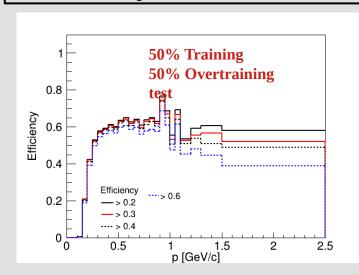


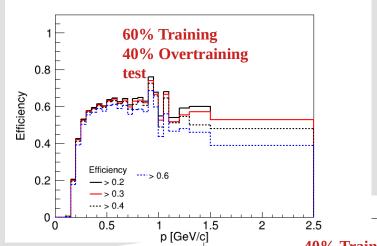


# Efficiency of e<sup>-</sup> in the testing sample with MLP



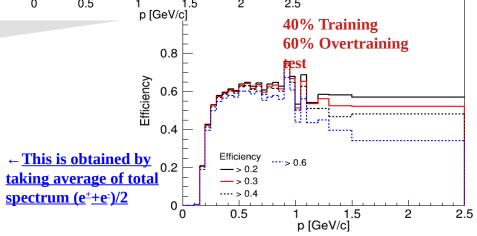






- **Efficiency:** Numerator → Reconstructed momentum distribution of e<sup>-</sup> with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + Production radius < 2 cm + |eta| < 1.
- Denominator → Generated momentum distribution of e<sup>-</sup> within Production radius < 2 cm taking average of + |eta| < 1







# Efficiency of e<sup>-</sup> in the testing sample

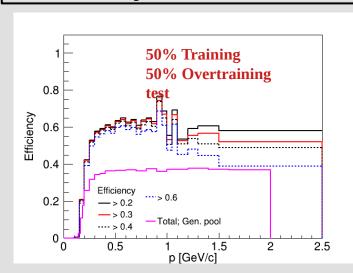


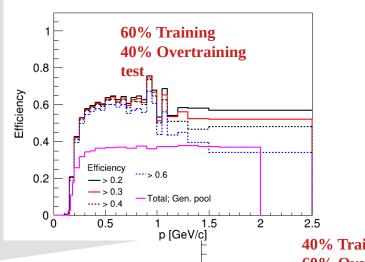




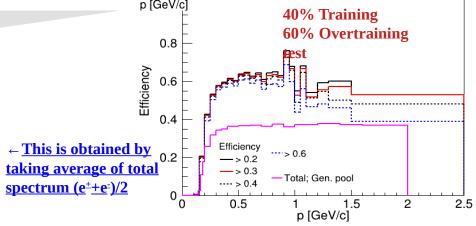
- Efficiency: Numerator → Reconstructed momentum distribution of e<sup>-</sup> with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + Production radius < 2 cm + |eta| < 1.</p>
- Denominator → Generated momentum distribution of e<sup>-</sup> within Production radius < 2 cm + |eta| < 1</li>




# Efficiency of e<sup>-</sup> in the testing sample



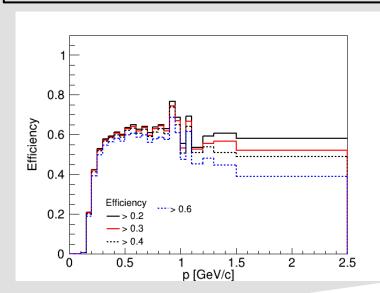

Current


TPC+TOF+ECAL

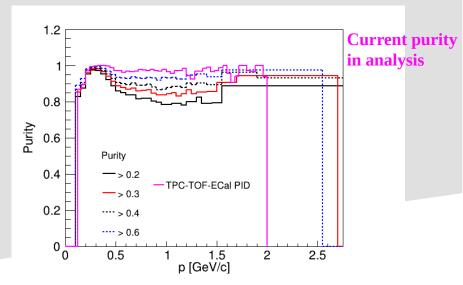
**PID** efficiency






- ► Efficiency: Numerator → Reconstructed momentum distribution of e<sup>-</sup> with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + Production radius < 2 cm + |eta| < 1.</p>
- Denominator → Generated momentum distribution of e<sup>-</sup> within Production radius < 2 cm + |eta| < 1</li>



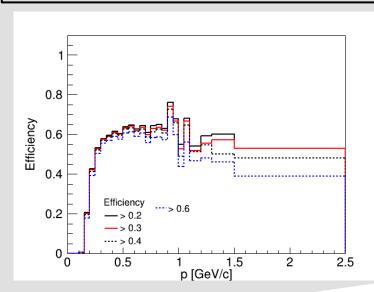

# Efficiency and Purity of e<sup>-</sup> in the testing sample



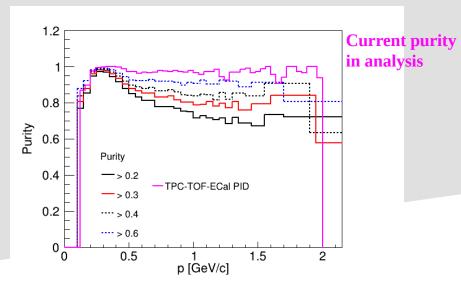




- ► Efficiency: Numerator → Reconstructed momentum distribution of e<sup>-</sup> with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + Production radius < 2 cm + |eta| < 1.</p>
- Denominator → Generated momentum distribution of e<sup>-</sup> within Production radius < 2 cm + |eta| < 1. ← This is obtained by taking average of total spectrum (e<sup>±</sup>+e<sup>±</sup>)/2




- Purity: Numerator → Reconstructed momentum distribution of e<sup>-</sup> with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + |eta| < 1.</p>
- Denominator → Reconstructed momentum distribution of all tracks with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) |eta| < 1.</li>

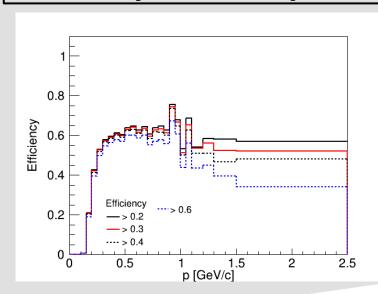

# Efficiency and Purity of e<sup>-</sup> in the testing sample



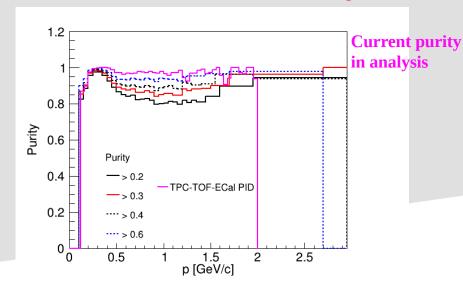




- Efficiency: Numerator → Reconstructed momentum distribution of e<sup>-</sup> with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + Production radius < 2 cm + |eta| < 1.</p>
- Denominator → Generated momentum distribution of e<sup>-</sup> within Production radius < 2 cm + |eta| < 1. ← This is obtained by taking average of total spectrum (e<sup>±</sup>+e<sup>-</sup>)/2




- Purity: Numerator → Reconstructed momentum distribution of e<sup>-</sup> with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + |eta| < 1.</p>
- Denominator → Reconstructed momentum distribution of all tracks with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) |eta| < 1.</li>

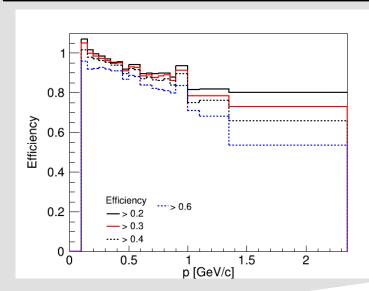

# Efficiency and Purity of e<sup>-</sup> in the testing sample

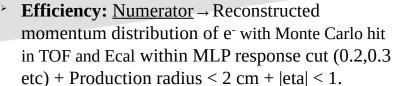


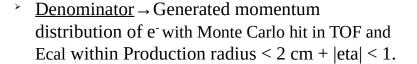


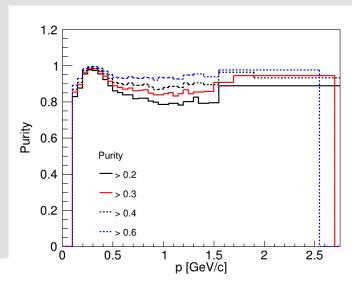


- Efficiency: Numerator → Reconstructed momentum distribution of e<sup>-</sup> with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + Production radius < 2 cm + |eta| < 1.</p>
- Denominator → Generated momentum distribution of e<sup>-</sup> within Production radius < 2 cm + |eta| < 1. ← This is obtained by taking average of total spectrum (e<sup>±</sup>+e<sup>-</sup>)/2





- Purity: Numerator → Reconstructed momentum distribution of e<sup>-</sup> with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + |eta| < 1.</p>
- Denominator → Reconstructed momentum distribution of all tracks with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) |eta| < 1.</li>


# Efficiency and Purity of e<sup>-</sup> in the testing sample

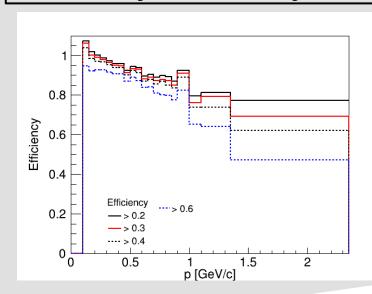

50% Training50% Overtraining test

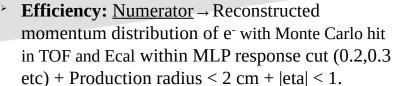




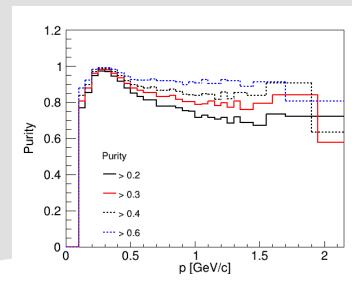








- Purity: Numerator → Reconstructed momentum distribution of e<sup>-</sup> with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + |eta| < 1.</li>
- Denominator → Reconstructed momentum distribution of all tracks with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) |eta| < 1.</li>

# Efficiency and Purity of e<sup>-</sup> in the testing sample


60% Training 40% Overtraining test







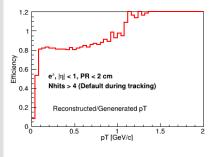
Denominator → Generated momentum distribution of e<sup>-</sup> with Monte Carlo hit in TOF and Ecal within Production radius < 2 cm + |eta| < 1.

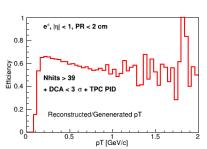


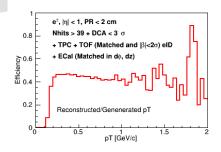
- Purity: Numerator → Reconstructed momentum distribution of e<sup>-</sup> with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + |eta| < 1.</p>
- Denominator → Reconstructed momentum distribution of all tracks with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) |eta| < 1.</li>

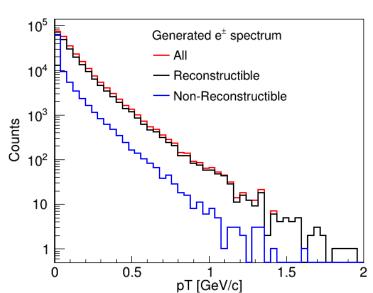
# **Definitions of Efficiency and Purity using Selection cuts**

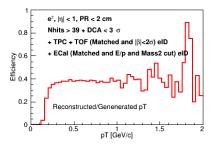



#### **Efficiency:**


- Denominator: Generated momentum spectrum of Electron Monte Carlo tracks (-1 < eta < 1 and PR < 2 cm) (from generated sample/MC stack).</p>
- \* **Numerator**: Reconstructed momentum spectrum of electron tracks (-1 < eta < 1 and PR < 2 cm)
  - $\rightarrow$  Nhits ≥ 39
  - > DCA < 3 sigma
  - Matched TOF and Ecal
  - TPC dEdX (p dependent -1 (0) to 2 sigma)
  - $\rightarrow$  TOF  $\beta$  (-2 to 2 sigma)
  - ECal PID (E/p and mass2).


#### Purity:


- **Denominator**: Reconstructed momentum spectrum of all Tracks (-1 < eta < 1)
  - Nhits
  - DCA < 3 sigma</p>
  - Matched in TOF and ECal
  - > TPC dEdX (p dependent -1 (0) to 2 sigma)
  - $\rightarrow$  TOF  $\beta$  (-2 to 2 sigma)
  - Ecal PID (E/p and mass2).
- Numerator: Same cuts but only electrons

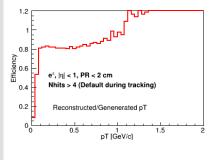






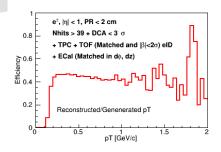


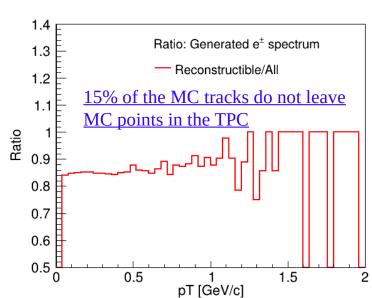


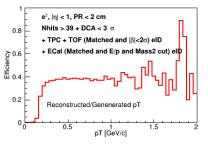





- Denominator: Generated spectrum of electron tracks from event generator (<u>irrespective of whether track is</u> "reconstructible" or not)
- Reconstructible: Particles should have MC points in the TPC (should reach the TPC)  $\rightarrow$  Not a well-defined category.


- Efficiency drops significantly as various track selection cuts are applied:
- No of hits in the TPC
- DCA
- TPC dEdX eID
- TOF Matching 2σ
- TOF beta
- **Ecal Matching**
- Ecal eID (E/p and Mass<sup>2</sup>)


This necessitates the use of Machine Learning approach.



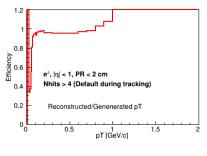


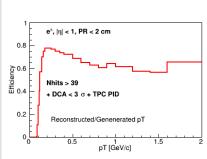


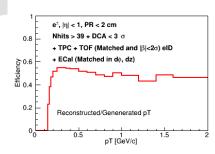


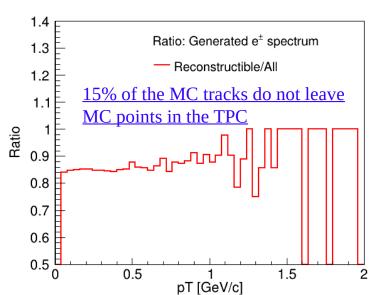


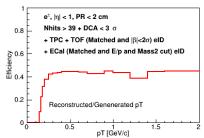




pT [GeV


- Efficiency drops significantly as various track selection cuts are applied:
- No of hits in the TPC
- > DCA
- TPC dEdX eID
  - TOF Matching 2σ
- TOF beta
- Ecal Matching
- Ecal eID (E/p and Mass²)


This necessitates the use of Machine Learning approach.


- <u>Denominator</u>: Generated spectrum of electron tracks from event generator (<u>irrespective of whether track is "reconstructible" or not</u>)
- Reconstructible: Particles should have MC points in the TPC (should reach the TPC) → Not a well-defined category.

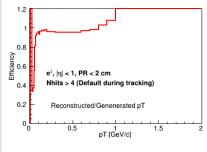


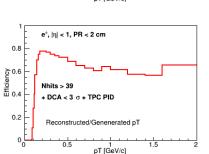


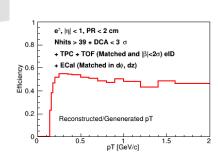


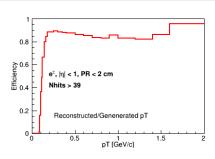


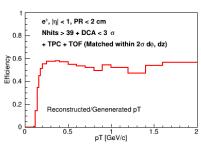


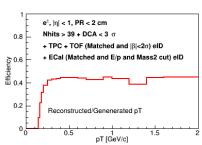



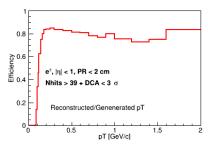


- - Denominator: Generated spectrum of electron tracks from event generator (only "reconstructible" tracks)
  - Reconstructible: Particles should have MC points in the TPC (should reach the TPC)  $\rightarrow$  Not a well-defined category.

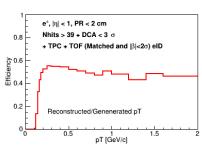

- Efficiency drops significantly as various track selection cuts are applied:
- No of hits in the TPC
- DCA
- TPC dEdX eID
  - TOF Matching 2σ
- TOF beta
- **Ecal Matching**
- Ecal eID (E/p and Mass<sup>2</sup>)


This necessitates the use of Machine Learning approach.














- Efficiency drops significantly as various track selection cuts are applied:
- No of hits in the TPC
- > DCA
- TPC dEdX eID
- TOF Matching 2σ
- TOF beta
- Ecal Matching
- Ecal eID (E/p and Mass²)

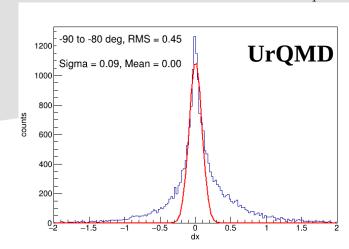
This necessitates the use of Machine Learning approach.

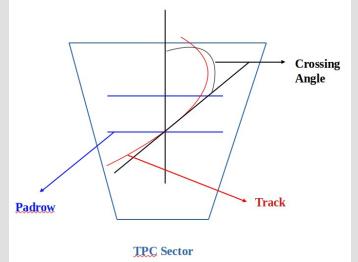
- Denominator: Generated spectrum of electron tracks from event generator (only "reconstructible" tracks)
- Reconstructible: Particles should have MC points in the TPC (should reach the TPC) → Not a well-defined category.

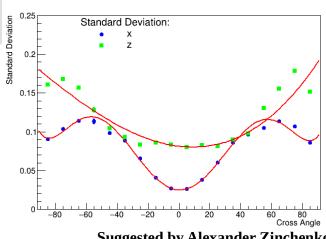
# **Remaining CB after CTC**



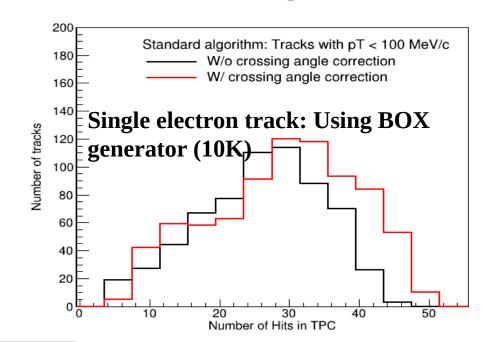
| Total reconstructed tracks after close TPC cut:                  | 1.70796e+06 |        |
|------------------------------------------------------------------|-------------|--------|
| ➤ Below: Only Conversion and pi0 Dalitz sources are considered   |             |        |
| Track has Partner Inside TPC i.e. between 35 MeV < pT < 100 MeV: |             | 564974 |
| hTrackIsNotElectron (Hadron):                                    |             | 104390 |
| Track has Partner with pT < 35 MeV:                              |             | 433735 |
| Track has Partner with pT > 100 MeV:                             |             | 272506 |
| Rest:                                                            | 332355      |        |
| -321                                                             | ======      | 2694   |
| -211                                                             | ======      | 1      |
| -13                                                              | ======      | 11     |
| -11                                                              | ======      | 1886   |
| 11                                                               | ======      | 20     |
| 13                                                               | ======      | 9      |
| 22 photon - partner is outside TPC acceptance                    | ======      | 107804 |
| 111 #pi^{0} - partner is outside TPC acceptance                  | ======      | 79031  |
| 130                                                              | ======      | 7434   |
| #eta - partner is outside TPC acceptance                         | ======      | 105725 |
| 321                                                              | ======      | 4739   |
| 331                                                              | ======      | 220    |


#### Minimum pt (in MeV) to enter TPC and TOF and exit TPC in various eta regions


| Eta   | theta | Min. Rad.  | Min. pt | Min. Rad. |        | Min. Rad. | Min. pt |
|-------|-------|------------|---------|-----------|--------|-----------|---------|
|       |       | of curv at | to      |           |        | at        | to      |
|       |       | TPC        | enter   |           |        |           | enter   |
|       |       | entrance   | TPC     | exit      | TPC    | entrance  | TOF     |
| ====  | ===== | ======     | =====   | ======    |        |           | ======= |
|       | 90.00 |            | 30.22   |           | 89.62  |           | 109.88  |
| 0.050 | 87.14 | 20.18      |         | 59.82     |        | 73.34     |         |
|       | 84.28 | 20.25      | 30.38   | 60.05     |        |           | 110.42  |
| 0.150 | 81.44 | 20.38      | 30.57   | 60.42     | 90.64  | 74.08     | 111.11  |
|       | 78.62 | 20.55      | 30.83   | 60.95     | 91.42  | 74.72     |         |
| 0.250 | 75.82 | 20.78      |         |           |        |           |         |
| 0.300 | 73.06 | 21.06      |         | 62.46     |        | 76.57     |         |
| 0.350 | 70.34 | 21.40      | 32.10   | 63.45     | 95.17  | 77.78     | 116.67  |
| 0.400 | 67.67 | 21.78      | 32.68   | 64.59     | 96.89  | 79.19     | 118.78  |
| 0.450 | 65.05 | 22.22      | 33.34   | 65.90     | 98.85  | 80.79     | 121.19  |
|       | 62.48 |            |         | 67.38     |        | 82.60     |         |
| 0.550 | 59.97 | 23.28      | 34.91   | 69.02     | 103.53 | 84.61     | 126.92  |
| 0.600 | 57.52 | 23.89      | 35.83   | 70.83     | 106.25 | 86.84     | 130.25  |
| 0.650 | 55.13 | 24.56      | 36.84   | 72.82     | 109.23 |           |         |
| 0.700 | 52.82 | 25.29      | 37.94   | 75.00     |        |           |         |
| 0.750 | 50.57 | 26.09      | 39.13   | 77.36     | 116.04 |           |         |
| 0.800 | 48.39 | 26.95      | 40.42   | 79.91     | 119.87 | 97.97     | 146.95  |
|       | 46.29 | 27.88      | 41.82   | 82.67     | 124.00 |           |         |
| 0.900 | 44.25 | 28.88      | 43.32   | 85.63     | 128.44 | 104.97    | 157.46  |
| 0.950 | 42.29 | 29.95      | 44.92   | 88.80     | 133.20 |           | 163.30  |
| 1.000 | 40.40 | 31.09      | 46.64   | 92.20     | 138.30 | 113.03    | 169.55  |
| 1.050 | 38.57 | 32.32      | 48.47   | 95.83     | 143.74 | 117.48    | 176.22  |
|       | 36.82 | 33.62      | 50.43   | 99.69     |        |           |         |
| 1.150 | 35.14 | 35.01      | 52.51   | 103.8     |        |           |         |
| 1.200 | 33.52 | 36.48      | 54.73   | 108.2     | 162.28 | 132.63    | 198.95  |
|       |       |            |         |           |        |           |         |

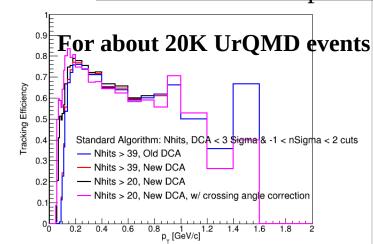

NOTE: TPC Inner (40.3 cm) and outer radius (119.5 cm) values are taken from the analysis code and TOF inner radius (146.5 cm) value is taken from its TDR.

### Current status

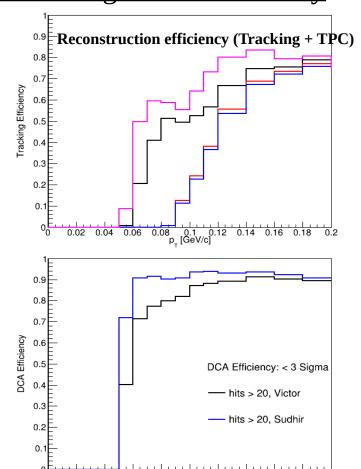

- 1) Limitations in Standard algorithm:
  - Hit requirement of 39 is too strong for low pT tracks.
  - Not able to reach pad rows above apogee (low  $p_{_{\rm T}}$ tracks stop before that).
  - In many cases, track stops even before apogee due to high  $\chi^2$  value (hence hit is not added to the track)  $\leftarrow$ this can be improved by performing **crossing angle correction** (more important for low  $p_{\scriptscriptstyle T}$  tracks).

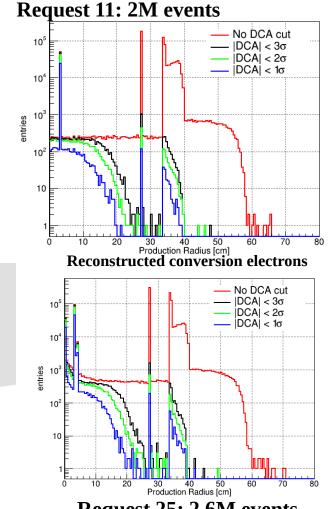




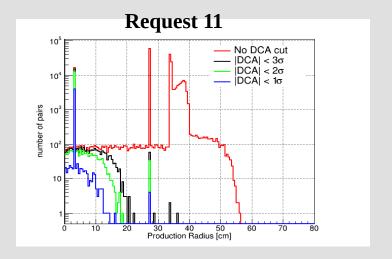


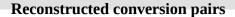

### <u>Current status: Improvement due to crossing angle correction</u>

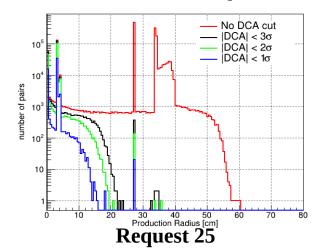


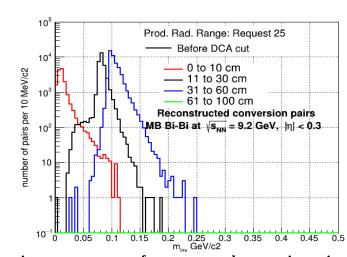


- Many of the reconstructed hits corresponding to a particular track are not found and therefore not added to the track.
- Simulate single electron track using BOX generator for both with and without crossing angle correction to get hit distribution (After DCA selection).
- Crossing angle correction seems to Apart from crossing angle correction, what can be done? find more hits and therefore, added to the track.
- - Reduce number of hits on the partner.
  - Improve DCA parametrization at low pT.

### <u>Current status: Improvement in tracking + TPC efficiency</u>

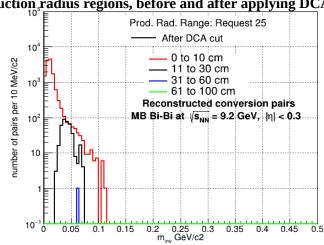


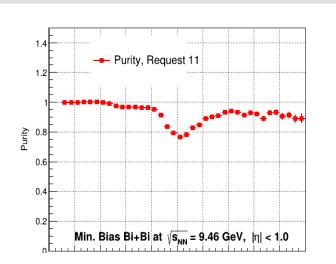


- Cuts: No of Hits, DCA and TPC PID.
- DCA parametrizations are updated at very low pT (enhances efficiency for tracks with Nhits > 20 but slight improvement for tracks with 39 hits → negligible effect on conversion rejection).
- Hits on the partner tracks reduced to 20.
- Effect of crossing angle correction.
- Observed improvement in the efficiency.

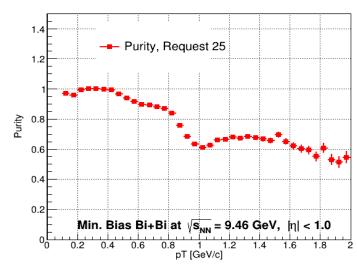



Request 25: 2.6M events






Invariant mass spectra of reconstructed conversion pairs in different production radius regions, before and after applying DCA selection.









### Possible improvement in S/B

```
S = N_s = No \text{ of Dalitz pair in } |y| < 0.3 \text{ with both legs pt} > 200 \text{ MeV}
```

B =  $(N_b)^2$  = (No of single tracks from Dalitz in |y| < 0.3 with pt > 200 MeV with partner anywhere in fid. or veto

### **Pluto**

```
Acc. |y| < 0.3 S/B = = 229 (For representation only)
```

**Maximum gain in S/B** (assuming partner with pT > 30 MeV and opening angle < 10 deg is fully recognized):

$$|y| < 0.3$$
 S/B = 1080  $\leftarrow$  factor 5 improvement

**Gain in S/B** (i.e. using TPC current reconstruction software and requiring Nhits > 39 and opening angle < 10 deg.):

|y| < 0.3 S/B = 326  $\leftarrow$  factor 1.42 improvement

### **UrQMD**

```
Acc. |y| < 0.3 S/B = 101 (For representation only)
```

**Maximum gain in S/B** (assuming partner with pT > 30 MeV and opening angle < 10 deg is fully recognized ):

$$|y| < 0.3$$
 S/B = 8308  $\leftarrow$  factor 8 improvement

**Gain in S/B** (i.e. using TPC current reconstruction software and requiring Nhits > 39 and opening angle < 10 deg.):

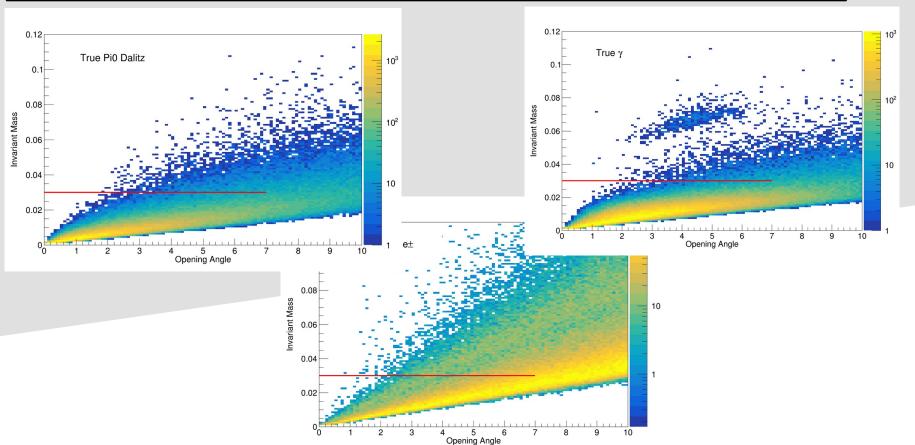
$$|y| < 0.3$$
 S/B = 128  $\leftarrow$  factor 1.26 improvement

# **Selection cuts: Pair analysis**



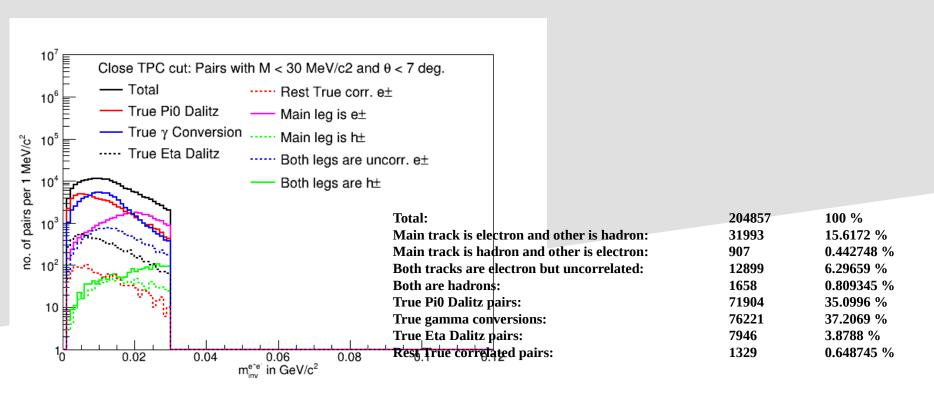
#### Request $25 \rightarrow 36M$ events:

- 1. Fully reconstructed tracks: Pool 1
  - 1) |Vz| < 100 cm.
  - 2) DCA  $x,y,z < 3\sigma$ .
  - 3) Nhits > 39
  - 4) TPC nSigma -2 to 2 sigma at p = 0 and -1 to 2 sigma for p > 800 MeV/c
  - 5) TOF nSigma -2 to 2 sigma
  - 6) TOF matching -2 to 2 sigma
  - 7) Limiting the eta acceptance of the reconstructed track to 0.3
- 2. Cuts on Partner: Pool 2
  - 1) Same as Pool 1 except in 0.3 < Eta < 1.0
- 3. Cuts on Partner for Close TPC Cut: Pool 3
  - 1) |Eta| < 2.5, Nhits > 10
  - 2) DCA > 3.5 sigma
  - 3) |TPC nSigma| < 2 sigma, Those tracks who DO NOT Matched in TOF within 2 Sigma (TPC ONLY).


Matched within 3 sigma having TOF nSigma with -3 to 3 sigma.

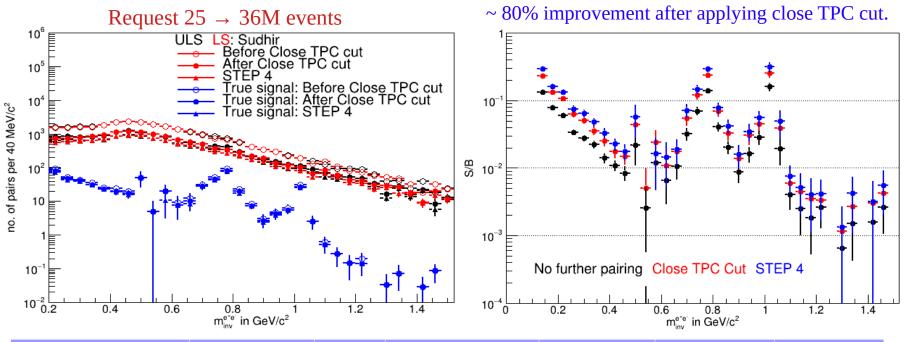
- 4. Cuts on Partner (tracks excluding Pool 1, 2 and 3): Pool 4
  - 1) |Eta| < 2.5, Nhits > 6, DCAz > 5 sigma, |TPC nSigma| < 3 sigma, Those tracks who DO NOT Matched in TOF within 2 sigma (TPC ONLY) **OR**

- No further pairing: Pairing between Pool 1 and 2
  - 1. <u>Dalitz rejection</u>: pairs with M < 120 MeV/c2
  - 2. Pairing: **pT** > **200 MeV**/**c**
- Close TPC Cut: Pairing between Pool 1 and 3
  - 1. Dalitz rejection: No further pairing of pairs with M < cut off.
  - 2. Pairing: pT > 200 MeV/c
- Close TPC Cut 2.0: Pairing between Pool 1 and 4
  - 1. Dalitz rejection: No further pairing of pairs with M < cut off.
  - 2. Pairing: **pT** > **200 MeV**/**c**


# 2D spectra of pairs after CTC






# **Sources of removed pairs in STEP 4**





# S/B: Pair analysis





| $0.2 \le M \le 1.5 \text{ GeV/c}^2$ | Signal (S)   | S loss | LS(B)           | CB reduc.   | S/B           | $S/\sqrt{(S+B)}$ |
|-------------------------------------|--------------|--------|-----------------|-------------|---------------|------------------|
| Before Close TPC Cut                | 644.5+/-25.4 |        | 26285.2+/-145.3 |             | 0.024+/-0.001 | 3.07             |
| After Close TPC Cut                 | 575.9+/-24.0 | 11%    | 13317.7+/-103.7 | 1.97 factor | 0.043+/-0.003 | 5.41             |
| STEP 4                              | 536.4+/-23.2 | 17%    | 10200.0+/-90.8  | 2.58 factor | 0.053+/-0.003 | 6.58             |

## Remaining tracks after Close TPC Cut 2.0 (STEP4)



Trying to understand the origin of remaining background after close TPC cut 2.0 (STEP 4).

| Total reconstructed tracks after close TPC cut:                                      | 1.48786e+06   |  |  |  |
|--------------------------------------------------------------------------------------|---------------|--|--|--|
| Below: Only Conversion and $\pi^0$ Dalitz sources are considered                     |               |  |  |  |
| a. Track has Partner with pT < 35 MeV ( $ \eta $ < 2.5):                             | 407257 (~27%) |  |  |  |
| b. Track has Partner inside TPC i.e. $35 < pT < 100$ MeV ( $ \eta  < 2.5$ ):         | 521056 (~35%) |  |  |  |
| c. Track has Partner with pT > 110 MeV ( $ \eta $ < 2.5):                            | 153655 (~10%) |  |  |  |
| Track is hadron:                                                                     | 99503 (~7%)   |  |  |  |
| Rest (Signal ( $\eta$ , etc), conversion, $\pi^0$ Dalitz whose partner outside TPC,) | 306386 (~21%) |  |  |  |

- Is **b.** reflecting inefficiency of the current tracking algorithm for low  $p_T$  tracks? Need expert help to improve the low- $p_T$  tracking reconstruction.
- Additional and independent venue:
  - Improve the overall eid efficiency using Machine Learning techniques (both TPC Only and TPC+TOF+ECal)  $\rightarrow$  Will help in <u>improving the signal as well as S/B</u>.