

LIMITS ON STERILE NEUTRINO MIXING FROM DAYA BAY EXPERIMENT

VITALII ZAVADSKYI, MAXIM GONCHAR

Joint Institute for Nuclear Research, on behalf of the Daya Bay collaboration

Introduction

The LSND experiment [1] has detected a 3.8σ excess of the expected number of $\overline{\nu}_e$ events in a $\overline{\nu}_{\mu}$ beam. Similar effects were observed by the MiniBooNE [2]: a 4.7 σ excess in a total number of ν_e and $\overline{\nu}_e$ events.

These excess could be explained with one or more sterile neutrinos, which interact only gravitationally.

The Daya Bay Experiment

Daya Bay systematic and observation

All systematic effects and uncertainties of the Daya Bay experiment can be devided into three groups:

- Background: ω^{Li} , $N^{\text{bkg}}(\text{Li/He})$, $N^{\text{bkg}}(\text{AmC})$, $N^{\text{bkg}}(C(\alpha, n))$, N^{acc} , $N^{\text{bkg}}(\text{fast } n)$, S(fast n)
- Reactor: $E^{fission}$, W_{th} , fission fractions (f), off-equilibrium, SNF (spent nuclear fuel), spectrum uncertainties (Huber-Mueller model)

- Energy: σ_E , IAV (inner acryl vassel), LSNL (liquid scinitillator non-linearity), E_{scale} , ϵ

The examples of signal and background events for the detector AD2 in three different periods you may find below. Pay attention to the y-axes scale.

Neutrino oscillation

- Neutrino flavor eigenstates are superposition of mass eigenstates.
- Neutrino mixing can be parameterized by the Pontecorvo-Maki-Nakagawa-Sakata matrix.
- Commonly, neutrino oscillation is parameterized by threeneutrino mixing.
- An additional state (sterile) that does not interact through weak interaction but it could mix with active states.
- A sterile state is one of the possible explanation of the reactor anomaly

 Δm_{32}^2

 Δm_{21}^2

 m^{2}

 ν_4

 ν_3

 ν_2

 ν_1

 Δm_{41}^2

Analysis Method

 CL_s method [4] was used to produce exclusion region:

- $H_0: \sin^2 2\theta_{14} = 0$, three neutrino mixing
- $H_1 : \sin^2 2\theta_{14} \neq 0$, four neutrino mixing
- $\Delta \chi^2 = \chi^2_{H_1} \chi^2_{H_0}$
- $CL_s = \frac{CL_{s+b}}{CL_b}$
- Exclusion rule: $CL_s < \alpha$

6 10 4 6 10 E, MeV E, MeV E, MeV

Nominal and enlarged Huber-Mueller uncertainties

- The Huber-Mueller model of $\overline{\nu}_e$ energy spectrum [6], [7] is used to produce results.
- Spectral uncertainties are enlarged to be more independent of $\overline{\nu}_e$ model

Daya Bay sensitivity and exclusion

 $\Delta \chi^2_{H_1}$

- $sin^2 2\theta_{14}$
- Daya Bay exclusion region based on 3158 days of data taken.
- No evidence of light sterile neutrino is observed.
- Stringent limits are obtained on the $\sin^2 2\theta_{14}$ in the region
 - $10^{-4} \text{ eV}^2 < \Delta m_{41}^2 < 0.3 \text{ eV}^2.$

Conclusion			
 No evidence of sterile neutrino is found. 	 Analysis based on full dataset was produced. 	 Influence of spectral uncertainties has been verified. 	 Best fit value is in the insensitive region.

References

- 1. Aguilar, A. et al. Evidence for neutrino oscillations from the obser- 3. vation of $\overline{\nu}_e$ appearance in a $\overline{\nu}_\mu$ beam. *Phys. Rev. D* 64, 112007 (11 Nov. 2001).
- 2. Aguilar-Arevalo, A. A. et al. Significant Excess of Electronlike Events in the MiniBooNE Short-Baseline Neutrino Experiment. Phys. 4. Read, A. L. Presentation of search results: The CL(s) technique. J. Rev. Lett. 121, 221801 (22 Nov. 2018).
- Cao, J. & Luk, K.-B. An overview of the Daya Bay reactor neutrino 5. experiment. Nuclear Physics B 908. Neutrino Oscillations: Celebrating the Nobel Prize in Physics 2015, 62-73. ISSN: 0550-3213 (2016).
 - Phys. G 28 (eds Whalley, M. R. & Lyons, L.) 2693–2704 (2002).
- Qian, X., Tan, A., Ling, J., Nakajima, Y. & Zhang, C. The Gaus- 6. sian CL method for searches of new physics. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 827, 63-78. ISSN: 0168-9002 (Aug. 2016).
- Huber, P. Determination of antineutrino spectra from nuclear reactors. Phys. Rev. C 84, 024617 (2 Aug. 2011).
 - Mueller, T. A. et al. Improved predictions of reactor antineutrino 7. spectra. Phys. Rev. C 83, 054615 (5 May 2011).