

N.S. Tsegelnik^a, E.E. Kolomeitsev^{a,b}, and V.V. Voronyuk^{a,c}

Vortex rings and global hyperon polarization at the NICA energies

^aJINR, Dubna, Russia

^bMBU, Banska Bystrica, Slovakia

^cBITP, Kiev, Ukraine

1. Introduction

- Hot and dense created matter undergoes explosive expansion.
- Angular momentum of ions \longrightarrow medium \longrightarrow **vorticity**

2. Setup

• The Parton-Hadron-String Dynamic model [4]: the generalized off-shell transport equations, Dynamical Quasi-Particle Model (for partons), FRITIOF Lund (strings breaking) PYTHIA and JETSET (jet production and fragmentation), Chiral Symmetry Restoration, ...

• Kinetics \longrightarrow **fluidization** [5] \longrightarrow hydrodynamics

• Fluidization criterion: cells with $\varepsilon > 0.05 \, \mathrm{GeV}/\mathrm{fm}^3$. Spectators do not form fluid!

• Spectator separation: $||y_{ ext{spectator}}| - y_{ ext{beam}}| \le 0.27$

3. Velocity and vorticity fields [5, 9]

• Vorticity \longrightarrow spin polarization $[1] \longleftrightarrow \langle P_{\Lambda} \rangle \approx \operatorname{rot} \left(\frac{\boldsymbol{v}}{4T} \right) \approx \frac{\boldsymbol{\omega}}{4T}$

 $S^{\mu}(x,p) = -\frac{s\left(s+1\right)}{12\,mT}\varepsilon^{\mu\nu\lambda\delta} \left[\partial_{\lambda}\left(\frac{u_{\nu}}{T}\right) - \partial_{\nu}\left(\frac{u_{\lambda}}{T}\right)\right] p_{\delta}$

• The **P**-violation in weak decays \longrightarrow the angular distribution of final protons depends on the orientation of the Λ -hyperons spin.

• Nonzero global polarization measured by **STAR** [2], **HADES** [3].

4. Freeze-out conditions [9, 10]

Vorticity [MeV/ħ]

• The fireball velocity consist of the *irrotational* (2+1)D Hubble-like and *rotational* terms.

• Maximum of the vorticity is located *at the* edges of the system.

Two deformed \bullet elliptical vortex rings move and rotate in opposite directions along the collision axis.

• In other works the **vortex sheets** [7], **vortex rings** [8] were predicted.

5. Polarization source [9, 10]

Vorticity [MeV/ħ

Vorticity [MeV/ħ]

• The following polarization hierarchy holds for the energy range $P_{\overline{\Xi}} \approx P_{\overline{\Lambda}} > P_{\overline{\Sigma}^0} > P_{\Lambda} > P_{\Sigma^0} > P_{\Xi}.$ $\sqrt{s_{NN}} = 3.5 - 11.5 \,\text{GeV}$: • The maximum of Λ and $\overline{\Lambda}$ polarization occurs at $\sqrt{s_{NN}} \approx 4 \,\text{GeV}$.

7. Feed-down effects [10]

- The feed-down contributions: • **strong** decays are already included • weak decays: $\Xi \rightarrow \Lambda + \pi$, contribution from Ω is negligible • electromagnetic decays: $\Sigma \to \Lambda + \gamma$
- The total measured spin vector for $\Lambda(\overline{\Lambda})$: $oldsymbol{S}^{*(\mathrm{meas})}_{\Lambda} = oldsymbol{S}^{*(\mathrm{prim})}_{\Lambda} + oldsymbol{S}^{*(\Sigma^0)}_{\Lambda} + oldsymbol{S}^{*(\Xi)}_{\Lambda}$ $oldsymbol{S}^{*(\Sigma^0)}_{\Lambda} = f_{\Lambda\Sigma^0} C_{\Lambda\Sigma^0} oldsymbol{S}^*_{\Sigma^0}, \quad oldsymbol{S}^{*(\Xi)}_{\Lambda} = f_{\Lambda\Xi} C_{\Lambda\Xi} B_{\Lambda\Xi} oldsymbol{S}^*_{\Xi}$ $f_{HH'} = N_{H'}/(N_H + N_{H'}), \quad B_{\Lambda\Xi} = 0.995$ $C_{\Lambda\Sigma^0} = -1/3, \quad C_{\Lambda\Xi^0} = 0.914, \quad C_{\Lambda\Xi^-} = 0.943$

- Polarization of the Λ hyperons *agrees* with experimental data, except low energies $\sqrt{s_{NN}} \leq$ 3 GeV. The *maximum* of the Λ polarization at $\sqrt{s_{NN}} \approx 4 \,\text{GeV}.$
- Polarization of $\overline{\Lambda}$ *larger* in 1.5 2 times than **A**. It *agrees* with experimental data at $\sqrt{s_{NN}} =$ 11.5 GeV, but is *less* at $\sqrt{s_{NN}} = 7.7$ GeV.
- The relationship between the multiplicities of Λ and Σ hyperons is unknown, so the filled area in the figure corresponds to their different proportions.
- Strong polarization suppression is caused by the feed-down from Σ^0 and $\overline{\Sigma}^0$ hyperons.

9. Measure of rotationality [5]

[tm]

0.4

0.3

0.2

0.1

0.4

~∆∩

ax 0.

0.4

0.3

0.2

0.1

8 - AuAu@7.7GeV	b=7.5fm AuAu@	⊉7.7GeV b=7	.5fm	′.7GeV	b=7.5fm_).:
	Į.		T T T	-		

10. Summary

• The (2+1)D Hubble-like expansion + vorticity at the system edges \leftrightarrow two deformed elliptical vortex rings.

• Different polarization of particles and antiparticles for all hyperons.

• The difference in polarizations arises naturally and can be related to the difference in the thermodynamic conditions and vorticity field.

• Strong polarization suppression due to the feed-down from $\Sigma^{0}(\overline{\Sigma}^{0})$. • The helicity separation effect in the reaction plane.

• The motion does not reach the Poiseuille flow and is close to the pure shear deformation.

References

[1] F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, Ann. Phys. (NY) **338**, 32 (2013). [2] L. Adamczyk et al. (STAR Collaboration), Nature 548, 62 (2017). [3] R.A. Yassine et al. (HADES Collaboration), Phys. Lett. B 835 (2022) 137506. [4] W. Cassing, E. L. Bratkovskaya, Nucl. Phys. A 831, 215 (2009) [5] N.S. Tsegelnik, E.E. Kolomeitsev, V. Voronyuk, Phys. Rev. C 107, 034906 (2023). [6] L.M. Satarov, M.N. Dmitriev, and I.N. Mishustin, Phys. At. Nucl. 72, 1390 (2009). [7] M.I. Baznat, K.K. Gudima, A.S. Sorin, and O.V. Teryaev, Phys. Rev. C 93, 031902 (2016). [8] Yu.B. Ivanov and A.A. Soldatov, Phys. Rev. C 97, 044915 (2018). [9] N.S. Tsegelnik, E.E. Kolomeitsev, V. Voronyuk, Particles 2023, 373 (2023). [10] V. Voronyuk, E.E. Kolomeitsev, N.S. Tsegelnik, arXiv:2305.10792 [nucl-th].