

Status of the BM@N project

M.Kapishin

M.Kapishin

Baryonic Matter at Nuclotron (BM@N) Collaboration:

3 Countries, 10 Institutions, 189 participants

- University of Plovdiv, Bulgaria
- St.Petersburg University
- Joint Institute for Nuclear Research
- Institute of Nuclear Research RAS, Moscow
- Shanghai Institute of Nuclear and Applied Physics, CFS, China;

- NRC Kurchatov Institute, Moscow
- Moscow Engineer and Physics Institute
- Skobeltsyn Institute of Nuclear Physics, MSU, Russia
- Moscow Institute of Physics and Technics
- Lebedev Physics Institute of RAS, Moscow

10th meeting of the BM@N collaboration was held in St Petersburg on 15-19 May
Institute of Physics and Technology, Almaty, accepted as an associate member of the Collaboration

Heavy Ion Collision Experiments

BM@N: √s_{NN}= 2.3 - 3.3 GeV MPD: √s_{NN}= 4 - 11 GeV

BM@N competitors:

HADES BES (SIS): Au+Au at $\sqrt{s_{NN}}$ = 2.42 GeV, Ag+Ag at $\sqrt{s_{NN}}$ = 2.42 GeV, 2.55 GeV.

STAR BES (RHIC): Au+Au at $\sqrt{s_{NN}}$ = 3-200 GeV

M.Kapishin

Production of *p, d, t, ³He, ⁴He* in 3.2 AGeV argon-nucleus interactions

L.Kovachev, Yu.Petukhov, V.Plotnikov, I.Roufanov

 $1/m_{T}^{2} \cdot d^{2}N/dm_{T}dy = C \cdot exp(-(m_{T}-m)/T_{0})$

Configuration of BM@N detector for heavy ion run

■ BC1, VC, BC2 (2-4) ■ SiBT, SiProf (5, 6) ■ Triggers: BD + SiMD (7)

Magnet SP-41 (0)

Vacuum Beam Pipe (1)

- FSD, GEM (8, 9)
- CSC 1x1 m² (10)
- □ TOF 400 (11)
- 🗖 DCH (12)
- □ TOF 700 (13)
- 🗖 ScWall (14)
- 🗖 FD (15)
- 🔲 Small GEM (16)
- CSC 2x1.5 m² (17)
- Beam Profilometer (18)
- 📕 FQH (19)
- FHCal (20)
- 🔲 HGN (21)

BM@N tracking detector installation for heavy ion run

7

Forward Si tracker detectors in front of GEM detectors /

GEM, **FST** groups + engineer group

GEM detectors on positioning mechanics in magnet

Carbon vacuum beam pipe

Vacuum boxes for beam detectors

Experimental run in 3.8 AGeV Xe beam with CsI (2%) target

BM@N Trigger detectors

Fragment detector FD

M.Kapishin

BM@N experiment

Vertex reconstruction

FST hit reconstruction: 4 Si stations

y cm

y cm

BM@N

GEM hit reconstruction: 7 stations + small **GEM** profile meter

GEM Hits

1

Raw data reconstruction: $\Lambda \rightarrow p\pi^{-}$ and $K_{s}^{0} \rightarrow \pi^{+}\pi^{-}$ signals BM@N

Central tracking activities:

A.Zinchenko, V.Vasendivna

optimize Vector Finder tracking algorithm
 improve alignment of silicon and GEM tracking detectors

Raw data: ToF-700 π +, K+, p, He3, d, t identification

Still without dedicated ToF calibration

Yu.Petukhov, S.Merts

Centrality selection with Hodoscope and FHCal detectors INR RAS group

R&D High Granularity Neutron detector prototype

INR RAS, JINR, NRC Kurchatov

~12X₀

HGN prototype (15 layers, thickness > 2 λ_{int}): 1-st layer – VETO 2-6 layers – γ -detection part (Pb/Scint.)

7-15 layer – n-detection part (Cu/Scint.)

Prototype tested in Xe run

BM@N

Time resolution between two nearest layers for neutron detection in the BM@N Run. Single cell time resolution is better then 200ps

M.Kapishin

BM@N experiment

Statistics of recorded interactions The information is current as of February 07 2023 23:59

- 3.8 AGeV: Spill ~2.2 s, cycle 12 s, up to 900k Xe ions per spill
- 3.0 AGeV: Spill ~3.5 s (up to 4 s), up to 1.3M ions per spill

Tasks to be completed for the Xe data analysis

- Optimization of the central tracking algorithm based on Vector Finder (Si+GEM): A.Zinchenko, I.Roufanov, V.Vasendina, J.Drnoyan
- use Λ and K_{S}^{0} signals as test probes for algorithm / alignment optimization
- Version for data processing is completed
- Particle identification in ToF-400 detectors: M.Rumyantsev, M.Mamaev
- Particle identification in ToF-700 detectors: L.Kovachev, Yu.Petukhov, S.Merts
- Versions for data processing are prepared
- need calibration of time of flight in ToF detectors to constrict the proton mass peak
- need T₀ pile-up / slewing corrections for ToF measurements (trigger group)
- Centrality measurement with forward detectors: INR RAS team
- need pile-up corrections of fragment hodoscope signals (beam area)
- \rightarrow First processing of full data reconstruction is under way

BM@N status and next plans in data analysis

- During 2014-2022, the installation configuration with full acceptance of detectors was implemented, experimental runs were carried out in beams of deuterons, carbon and argon ions
- First physics publication has been prepared on the study of the production of π+ and K+ mesons in argon-nucleus interactions at an energy of 3.2 AGeV
- Physics run was carried out in a Xe beam with an energy of 3.8 and 3 AGeV on a CsI target

Next plans in the data analysis:

- analysis of production of hyperons, mesons, light nuclear fragments in Xe+CsI interactions;
- definition of interaction centrality classes
- analysis of collective flow of protons, $\pi \pm$, light nuclear fragments at energy of 3 AGeV
- search for light hyper-nuclei $_{\Lambda}H^3$, $_{\Lambda}H^4$

Plans for BM@N upgrade and physics runs

If physics run in Xe beam is possible in 2024: beam energy scan in the range of 2-3 AGeV

 \rightarrow same central tracker configuration based on silicon and GEM detectors \rightarrow complete replacement of external drift chambers with cathode strip chambers

- Physics run in Bi beam is possible after 2024, depends on the implementation of plans for the NICA collider
- To be ready for the experiment in the Bi beam, further development of the central tracker is necessary: installation of additional stations of silicon detectors
- It is planned to put into operation a 3-coordinate neutron detector of high granularity to measure neutron yields and collective flow

Thank you for attention!

M.Kapishin

EOS of symmetric and asymmetric nuclear matter

BM@N experiment

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

EOS: relation between density, pressure, temperature, energy and isospin asymmetry

$$E_A(\rho, \delta) = E_A(\rho, 0) + E_{sym}(\rho) \cdot \delta^2$$

with $\delta = (\rho_n - \rho_p)/\rho$ E/A(ρ_o) = -16 MeV

Curvature defined by nuclear incompressibility: $K = 9\rho^2 \ \delta^2(E/A)/\delta\rho^2$

Study symmetric matter EOS at ρ =3-5 ρ_0 \rightarrow elliptic flow of protons, mesons and hyperons

 \rightarrow sub-threshold production of strange mesons and hyperons

 \rightarrow extract K from data to model predictions

► Constrain symmetry energy E_{sym}

 \rightarrow elliptic flow of neutrons vs protons

 \rightarrow sub-threshold production of particles with opposite isospin

M.Kapishin

Ar beam data: Identification of π +, K+, p, t, He3, BM@N

d/He4

THINKING BELLEVILLE

L.Kovachev, Yu.Petukhov, I.Roufanov, V.Plotnikov: p, d / He4, He3, t in ToF-400 and ToF-700 data

A.Huhaeva (student), V.Plotnikov: π - in ToF-400 data

K.Mashitsin (student), S.Merts: π t in ToF-400 and ToF-700 data (independent tracking)

BM@N Experimental physics run in Xe beam with CsI target

BM@N: Estimated hyperon yields in Xe + Cs collisions

4 A GeV Xe+Cs collisions, multiplicities from PHSD model, Beam intensity 2.5·10⁵/s, DAQ rate 2.5·10³/s, accelerator duty factor 0.25

 $1.8 \cdot 10^9$ interactions $1.8 \cdot 10^{11}$ beam ions

Particle	E _{thr} NN GeV	M b<10 fm	٤ %	Yield/s b<10fm	Yield / 80 hours b<10 m	0	DCM-SMM
Λ	1.6	1.5	2	150	5·10 ⁷		x 0.75
[1]	3.7	2.3·10 ⁻²	0.5	0.55	2·10⁵		x 0.5
Ω	6.9	2.6·10 ⁻⁵	0.25	3.2.10-4	110	Τ	
Anti-A	7.1	1.5·10 ⁻⁵	0.5	3.7.10-4	130	/	

Xe + Csl run configuration of hybrid central tracker: 4 Forward Si + 7 GEM stations

DCM-SMM model: Xe + Sn , T_0 = 1.5 - 3.9 AGeV

A.Zinchenko, V.Vasendina

BM@N experiment

Trigger rates and DAQ capacity

3.8 AGeV: Spill ~2.2 s, cycle 12 s, up to 900k Xe ions per spill 3.0 AGeV: Spill ~3.5 s (up to 4 s), up to 1.3M ions per spill

v Spill nbr. 235164 16.01.2023 18:45:11

BM@N Trigger selection

Combined trigger: CCT2 = BT * FD Amp < thr * N(BD) > 3

Centrality determination at BM@N

• Fit results are good both for MC-Glauber and Inverse Γ -fit methods

• Impact parameter distributions in centrality classes are well-reproduced

Directed and elliptic flow at BM@N

BM@N

- Good agreement between reconstructed and model data
- Approximately 250-300M events are required to perform multi-differential measurements of v_n

3D High Granularity Neutron detector

M.Kapishin

BM@N experiment

Beam parameters and setup at different stages of BM@N experiment

BM@N

Year	2016	2017 spring	2018 spring	2023	2025 and later
Beam	d(↑)	С	Ar	Xe	Bi
Max.inten sity / spill	0.5M	0.5M	0.5M	1M	1.5M
Trigger rate, spill	5k	5k	8k	10k	15k
Central tracker status	6 GEM half planes	6 GEM half planes	6 GEM half planes + 3 forward Si planes	7 GEM full planes + 4 forward Si planes	7 GEM full planes + forward Si + STS planes
Experiment al status	technical run	technical run	technical run+physics	stage1 physics	stage2 physics