

«Search for the dark sectors in missing energy events»

58th meeting of the PAC for Particle Physics, 21th June 2023

Motivation

Existence of DM is firmly established: rotational curves of galaxies, lensing, ...

- Dark doesn't couple to γ
- Cold/Warm -v < c
- DM relic density $~\rho_{DM} \sim 10^{\text{-6}} \, GeV \, /cm^3$

WIMPs (χ) (m_{χ} , g_{χ}) ~ (m_{EW} , g_{EW}) - are not seen at LHC and in direct searches. $\rho_{DM} \sim 0.3 \text{ GeV} / \text{cm}^3$ in Solar system => n_{WIMP} (~1 TeV) ~ $10^3/\text{m}^3$, a very low counting rate.

Dark Matter (DM) from a Dark Sector (DS)

- DM is a part of DS
- DS consists of particles and fields which are singlet with respect to the SM gauge group, could be charged e.g. under a new U(1)' gauge symmetry
- interacts with the SM via gravity and a new week interaction

Vector portal to DS – Dark photon A'

Benchmark scenario: dark photons. $A' \sim g_D (\gamma) e \sim \gamma$

$$\alpha_D \equiv \frac{g_D^2}{4\pi} \quad \frac{\chi}{p_D} \quad e^{e^-} \quad \alpha \equiv \frac{e^2}{4\pi}$$

• A'decay modes:

massive V, dark photon (A') - γ -A' kinetic mixing: $\Delta L = \epsilon/2 F^{\mu\nu} A'_{\mu\nu}$

- coupling strength ~ ϵe

- $m_{A'} < 2m_{\chi}, A' \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^$ $m_{A'} > 2m_{\chi}, A' \rightarrow \chi\chi$
- TDM (ϵ , α_D , m_{χ} , m_A) parameters can be probed at accelerators
- Useful variable to compare sensitivity. χ -SM annihilation: $n_{\chi} < \sigma v > \approx [\alpha_D \epsilon^2 (m_{\chi}/m_{A'})^4] \alpha/m_{\chi}^2 = y \alpha/m_{\chi}^2$

NA64 research program

- Thermal sub-GeV Dark Matter (LDM)
- ALP, $S \rightarrow \gamma \gamma$ decays
- S, P, V, and A dark portal particles, their invisible, visible, semi-visible decays
- SM expantion: Light **B-L** Z', ...
- ATOMKI anomaly: X17 (P, V, A') \rightarrow e+e- decays

NA64e: 50-150 GeV e[±] **NA64**μ: 100-160 GeV μ⁻ *NA64h*: 50-200 GeV π-, K-, p

JINR participation in the NA64 project

Collaboration: Univ. of Bonn (Bonn), JINR(Dubna), INFN (Genova), LPI, INR, SINP MSU (Moscow), IHEP (Protvino), TPU(Tomsk), SAPHIR(Chile), IFIC(Valencia), ETH(Zurich)) +recently York University (Canada)

- **LHEP:** G.Kekelidze, V.Kramarenko, V.Lysan, I.Zhukov, T.Enik, K.Salamatin, I.Kambar, P.Volkov, D.Peshekhonov, E.Kasianova, S.Gertsenberger, A.Ivanov
- LTP: V.A.Matveev, A.Zhevlakov
- **LNP:** V.Frolov

FTE:

Detector operation & support - 3,0;Analysis and MC simulation- 3,0;Theory- 0,5

Young reseachers:

K.Salamatin (Ph.D.), I.Kambar, P.Volkov, E.Kasianova, S.Gertsenberger, A.Ivanov, A.Zhevlakov(Ph.D.)

- Proposed as P348 in 2014
- Approved with e⁻ beam in March 2016 (NA64e)
- Proposal to run with M2 muon beam (NA64µ) in 2019.

Operation

2016 – 5 weeks at H4 (NA64e) ~4,5x10¹⁰eot, 2017 – 5 weeks at H4 (NA64e) ~5,5x10¹⁰eot, 2018 – 6 weeks at H4 (NA64e) ~2,0x10¹¹eot, 2017-18 in visible mode ~ 8,4x10¹⁰eot, 2021 – 5 weeks at H4 (NA64e) ~ 5,2x10¹⁰eot, 2022 –10 weeks at H4 (NA64e) ~ 6,4x10¹¹eot, $e^+ ~ 5,0x10^{10}eot$ Total accumulated & analysed ~10¹²eot, published ~3,4x10¹¹eot 2021 – 3 weeks pilot-run at M2 (NA64µ) 2022 – 3 weeks pilot-run at M2 (NA64µ) Total accumulated ~4x10¹⁰µot

NA64 approach

ELECTROMAGNETIC

CALORIMETER (ECAL)

HCAL < 2 GeV

no energy in Veto and HCAL

64

Muon (g-2): additional motivation to search for A'

- Most stringent bounds compare to LSND, SLAC, MiniBooNE with~ 10^{20} - 10^{22} POT. Sensitivity of NA64~ ϵ^2 , while for the beam-dump it's ~ $\epsilon^4 \alpha_D$
- Plans to cover $m_{A'} \le m_{\mu}$ area with ~ a few 10^{12} EOT

64

- Challenge: high mass region $m_{A'} \ge \sim m_{\mu}$, as cross-section $\sim (1/m_{A'})^2$
- Ways out: i) resonance A' production, and ii) high-energy muon beam (NA64 $_{\mu}$)

NA64e potential for new physics

Search for axion, ALP & S decays

Production via Primakoff effect

Closing the gap between beam dump and colliders

$$e^-Z \to e^-Z\gamma; \gamma Z \xrightarrow{\smile} aZ; a \to \gamma\gamma$$

Signature:

- 100 GeV e- track
- E_{ECAL} < E₀ shower in ECAL
- no activity in Veto and HCAL1
- e-m like energy in HCAL2+HCAL3

Main bckg – punchthrough neutral secondaries (n,K⁰_{S,L})

NA64e potential for new physics

Constraints on dark S,P,V,A and (g-2)_e from high-precision measurements of α

LKB(⁸⁷Rb): α^{-1} = 137.035999296(11). 2.5 more accurate, 5 σ difference with Berkley(¹³⁷Cs)

NA64 provided most stringent constraints on new physics contribution $\Delta a_X < 10^{-15} - 10^{-13}$ for X=S, P, V, or A compared to LKB and Berkley high-precision measurements

NA64e potential for new physics

Search for new B-L Z' boson

3.2x10¹¹ EOT collected in 2016-2018, 2021 runs

Visible mode: 8Be* anomaly – new X boson?

Visible mode: 8Be* anomaly – new X boson?

Ē

2024: ~ 2 x 10¹¹ EOT

Background

Active damp: shashlik type ECAL cell

64

Readout WLS fibers go in a spiral to avoid E-leak and dead zones

Hermeticity scan shows - no leak and potential source of background

Background due to the insufficient detector hermeticity against charged and neutral hadrons produced in electron beam interactions in the beam material at large angles. It was supressed **for charged secondaries by using Straw Tubes** as a veto.

While for neutrals a veto HCAL (VHCAL) has to be installed in the setup (done in 2023).

NA64 results from 2016-2022: ~10¹²eot

2023 data taking status

CERN SPS M2 160 GeV muon beam offers unique opportunities to further searches for DS of particles predominantly weakly-coupled to 2nd second and possibly 3rd generations of the SM.

$$\mu + Z \rightarrow \mu + Z + Z_{\mu}, \ Z_{\mu} \rightarrow \nu \bar{\nu}$$

 $L_{\mu}-L_{\tau}$ models Z_{μ} could explain (g-2)_{μ}

Sensitivity to be update with exact tree level calculations (ongoing)

Muon mode: LDM search

Search for **Dark photons** complementary to NA64e in mass region $m_{A'} > 0.1$ GeV

 $\mu + Z \to \mu + Z + A', A' \to \chi \bar{\chi}$

JINR contribution & obligations

electron setup

muon setup

Size, X-Y mm ²	Diameter of drift tubes, mm	Number of tubes	Comments
200x200	6	768	12 chambers
1200x600	6	5376	7 chambers
200x200	2	768	2 prototypes,

- full support of the DAQ, straw chamber online-monitor
- theory, M-C simulation, reconstruction, data taking and analysis
- 2 PhDs in progress

Straw Tube have advantage over Micromegas and GEM track detectors used in NA64 due to:

- a smaller material buget 0.0016 X/X₀
- higher efficiency at high intensity & better multitrack reconstruction

Financial request

Schedule proposal and resources required for the implementation of the Project

Names of costs, resources,	Cost (thousands of \$) resource requirements	Cost, distribution by year				
sources of funding		1 st year	2 nd year	3 rd year	4 th year	5 th year
International cooperation (IC)		70	70	40		
Materials		15	15	15		
Equipment and third-party services (commissioning)		20+37	20+37	20+37		
Commissioning work						
Services of research organisations		10	10	10		

Outlook & conclusions

NA64 just reached a major milestone of accumulating ~ 10^{12} EOT which allows one to start probing very interesting LDM benchmark models. The analysis is ongoing and with the increased statistics we expect to improve the sensitivity for ALPs, Lµ-Lτ and B-L Z' bosons, ,....

The plan until LS3 is to accumulate as many as possible electrons on target (up to $5 \ 10^{12}$) and also use the positron mode to enhance the sensitivity in the higher A' mass region.

NA64 started its program at the M2 beam-line providing unique high intensity 160 GeV muons to explore dark sectors weakly coupled to muons. The results of the pilot runs show that with an optimized setup, one could collect > 10^{11} MOT before LS3 in order to check if an Lµ-Lτ Z' boson as the explanation of the g-2 muon anomaly and complement the searches with electrons. After LS3 the experiment would then continue data taking to accumulate ~ 10^{13} MOT to explore the A'

After LS3 the experiment would then continue data taking to accumulate ~ 10^{13} MOT to explore the A' higher mass region and $\mu \rightarrow \tau$ and $\mu \rightarrow e$ LFV processes.

In the 2022 beam-time, we also accumulated $\sim 2 \times 10^9$ pions on target in order to understand the potential of NA64 to explore dark sectors coupled predominantly to quarks using the missing energy technique. This will be further investigated and, if the feasibility would be demonstrated, a dedicated search will be performed after LS3.

The exploration of the NA64 physics potential has just begun. Proposed searches with leptonic and hadronic beams provide unique sensitivities & highly complementary to similar projects.

Tnank you!

dark matter mass

Constraints on DM-electon cross-sections⁻

Complementarity of NA64 and direct DM searches

XENON Coll. arXiv:1907.11485 SG,Krasnikov,Matveev arXiv:2003.07257

D. Kirpichnikov (preliminary)

The 90% C.L. upper limits on DM-electron scattering cross-sections NA64: no assumptions on DM number density and velocity distribution

NA64h: Search for dark sector coupled to q's with π , K, p beams

- ✤ Leptophobic LDM in reactions pA->DM+X
- In SM π^0, η, η' , K⁰ -> $\nu\nu$ suppressed : Br(K⁰ -> $\nu\nu$) ~10⁻¹⁰ m_{ν}~10 MeV
- could occur in 2HDM, 2HDM+ light scalars, mirror model, ..
- in some scenarios could be at $Br(K^0 \rightarrow inv) \sim 10^{-8} 10^{-6}$ not constrained by K-> πvv .
- clean probe of NP scales above 100 TeV,
- Complementary to K->πνν (NA62)
- K⁰ mirrow K⁰ oscillations

NA64h: Search for dark sector coupled to quarks

HCALS

First test-run at H4 in 2022 $\sim 3x10^9 \pi ot, \sim 1d$

TT: 50 GeV MM3,4 MM1,2 MBPL

η, η', K0 - production: π(K) Z -> η(K⁰) (Z-1) χ π - η γ χ χ Fe(26,56) Signature of π(K) Z->η(K⁰) (Z-1); η(K⁰) ->inv

- Single track from 50 GeV p-
- MIP in WCAL and S
- N0 energy in HCAL: $E_{miss} \sim E_0$ E(hadron), HCAL(0+1+2), VETO<Thr

Summary (contributions to PBC, schedule)								
NA64e	NA64μ	NA64h						
- < LS3 ~5x10 ¹² EOT - LDM models - A',X17 \rightarrow e ⁺ e ⁻ ATOMKI - ALP(S) $\rightarrow \gamma\gamma$ decays - Dark <i>S</i> , <i>P</i> , <i>V</i> , <i>A</i> , milliQ - Resonant A'with e ⁺	- 2021 test run - (g-2) _µ ~10 ¹¹ MOT - LDM, A'~10 ¹³ MOT - μ - τ conversion	- 2024-26 test run - $\pi^0, \eta, \eta' \rightarrow inv, 10^{12} \text{ POT}$ - $K^0_{S,L} \rightarrow inv \sim 10^{12} \text{ KOT}$ - $pA \rightarrow X + E_m \sim 10^{12} \text{ POT}$						
NA64++ provisional time schedule								
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027								
e^{-} , H4 \rightarrow (g-2) _µ , 8Be, Dark Sector	LS2 8Be, Dark Sector	LS3						
$\mu^{-}, M2 \rightarrow Proposa$	al, Preparation g _μ -2, Dark sector, μ-1	E LS3						
π-, K-, H2-	-H8,T9 → <mark>,ŋ,ŋ´,K, → in</mark> v	LS3						

NA64e approach

ENERGY DEPOSITED IN THE ECAL

64

Research program

NA64 method vs beam-dump approach to probe LDM.

Semivisible mode

cascade of decays

2023

Two important modification in 2023, new Vhcal calorimeter and second magnetic spectrometer with two large Straw stations.

2023

Online analysis, preliminary results for 4.5x10¹⁰ electrons on target.

mm