BESIII Project

Igor Denisenko

JINR PAC 21.06.2023

BESIII and BEPCII (IHEP, Beijing, China)

2004: start of BEPCII construction 2008: test run of BEPCII 2009-now: data taking

BESIII detector

BEPCII: Beam energy: 1.0-2.3 ГэВ Beam energy spread: 5 x 10⁻⁴ Design luminosity: 1×10^{33} /cm²/s @ ψ (3770) Achieved luminosity: 1.01×10^{33} /cm² (05.04.2016)

LINAÇ

21.00.2023

BESIII and BEPCII (IHEP, Beijing, China)

2004: start of BEPCII construction 2008: test run of BEPCII 2009-now: data taking

BESIII detector

2019: BEPCII upgrade: 2.3 GeV \rightarrow 2.47 GeV, top-up mode.

The next machine uprgrade approved to increase the collision energy up to **5.6 GeV** in **2025**.

BEPCII:

Beam energy: 1.0-2.3 Γ B Beam energy spread: 5 x 10⁻⁴ Design luminosity: 1 x 10³³/cm²/s @ ψ (3770) Achieved luminosity: 1.01 x 10³³/cm² (05.04.2016)

BESIII detector

NIM A614, 345(2010)

MDC:

- Spatial resolution: $\sigma_{xy} = 120\mu m$
- Momentum resolution: 0.5% @ 1GeV
- **dE/dx** resolution: 6%

TOF (double layer scintillator/MRPC): Time resolution: 80ps (barrel) 60ps (endcaps)

EMC: Csl cristal

- Energy resolution: 2.5% @1GeV
- Spatial resolution: 6mm

Muon ID:

9 layers RPC (8 for endcaps) in the flux-return yoke

The BESIII Collaboration

The collaboration consists of more than 500 members from 17 countries.

Physics at BESIII

21.06.2023

Physics at BESIII

21.06.2023

Physics at BESIII

BESIII highlights

BESIII highlights

JINR group at BESIII

- Light hadron spectroscopy
 - spectra of $f_{\scriptscriptstyle 0}$ and $f_{\scriptscriptstyle 2}$ mesons and search for scalar and tensor glueballs
- Charmonium states
 - study of the production properties
- Phase difference between strong and EM phases in J/ψ decays
- FF of c-quark
- Internal refereeing, RG
- Software and analysis tools development and maintenance
- Distributed computing
- Machine learning algorithms for track finding and vertex reconstruction

LNP: O. Bakina, I. Boyko, G. Chelkov, D. Dedovich, I. Denisenko, P. Egorov, A. Guskov, Yu. Nefedov, A. Zhemchugov

BLTP: V. Bytyev

LIT: V. Korenkov, G.A.Ososkov, I.Pelevanyuk

JINR group at BESIII

N⁰	Category	NAME	Division	Position	Amount
N⁰	of employees				of FTE
п/а					
1.	scientific staff	Bakina O.	DLNP	researcher	1
		Boyko I.	DLNP	researcher	0.3
		Shelkov G.	DLNP	researcher	0.1
		Dedovich D.	DLNP	researcher	0.3
		Denisenko I.	DLNP	researcher	0.5
		Guskov A.	DLNP	researcher	0.1
		Nefedov Y.	DLNP	researcher	1
		Egorov P.	DLNP	trainee	1
		Pogodin S.	DLNP	trainee	1
		Zhemchugov A.	DLNP	researcher	0.5
		Bytyev V.	BLTP	researcher	0.5
		Korenkov V.	LIT	researcher	0.1
		Ososkov G.	LIT	researcher	0.2
		Pelevanyuk I.	LIT	researcher	0.2
2.	engineers				
3.	professionals				
4.	workers				
	Total:				7.8

12

Partial wave analysis of $J/\psi \rightarrow K^+K^-\pi^0$ (PRD 100, 032004 (2019))

			$K^{\pm}\pi^0$ channels			
J^{PC}	PDG	$M({\rm MeV}/c^2)$	$\Gamma({ m MeV}/c^2)$	b(%)	$b^{+(-)}(\%)$	ΔNLL
1-	$K^{*}(892)^{\pm}$	$893.6 {\pm} 0.1 {}^{+0.2}_{-0.3}$	$46.7 \pm 0.2^{+0.1}_{-0.2}$	$93.4 \pm 0.4^{+1.8}_{-5.8}$	$42.5 {\pm} 0.1 {}^{+0.5}_{-1.7}$	_
1-	$K^{*}(1410)^{\pm}$	1380^{\star}	176*	$0.26 {\pm} 0.04$	$0.11 {\pm} 0.02$	80
1-	$K^{*}(1680)^{\pm}$	1677^{\star}	205*	$0.20\!\pm\!0.03$	$0.08 {\pm} 0.01$	56
2+	$K_2^*(1430)^{\pm}$	$1432.7{\pm}0.7^{+2.2}_{-2.3}$	$102.5 {\pm} 1.6^{+3.1}_{-2.8}$	$9.4 \pm 0.1^{+0.8}_{-0.5}$	$4.2{\pm}0.1^{+0.3}_{-0.2}$	—
2+	$K_{2}^{*}(1980)^{\pm}$	$1868 {\pm} 8^{+40}_{-57}$	$272 \pm 24^{+50}_{-15}$	$0.38 {\pm} 0.04 {}^{+0.22}_{-0.05}$	$0.15 {\pm} 0.02 {+} {}^{+0.08}_{-0.02}$	192
3-	$K_{3}^{*}(1780)^{\pm}$	1781^{\star}	203*	$0.16 {\pm} 0.02$	$0.07 {\pm} 0.01$	105
4+	$K_4^*(2045)^{\pm}$	$2090 \pm 9^{+11}_{-29}$	$201 {\pm} 19^{+57}_{-17}$	$0.21 {\pm} 0.02 {}^{+0.10}_{-0.05}$	$0.09 {\pm} 0.01 {}^{+0.04}_{-0.02}$	212
3^{-}	non-resonant			$\sim 1.5\%$	$\sim 0.6\%$	629
			K^+K^- channel			
J^{PC}	PDG	$M({ m MeV/c}^2)$	$\Gamma({\rm MeV/c^2})$	b((%)	$\Delta \ln L$
1		$1651 \pm 3^{+16}_{-6}$	$194 \pm 8^{+15}_{-7}$	1.83 ± 0	$.11^{+0.19}_{-0.17}$	796
1		$2039 \pm 8^{+36}_{-18}$	$193{\pm}23^{+25}_{-27}$	0.23±0	$.04^{+0.07}_{-0.06}$	102

Nucl. Phys. B 296, 493 (1988)

- Four states are observed in the decay for the first time.
- The most precise measurements of $K^*(892)^{\pm}$ and $K_2(1430)^{\pm}$.
- No evidence for exotic X(1575)!

21.06.2023

$J/\psi \rightarrow \gamma PP$: spectroscopy of f_o mesons and scalar glueball (PLB 816, 136227 (2021))

Best estimate
$$M_G = (1865 \pm 25^{+10}_{-30}) \text{ MeV}$$
 $\Gamma_G = (370 \pm 50^{+30}_{-20}) \text{ MeV}$

Nonperturbative approach	Ref.	Predicted mass (MeV)		
Unquenched LQCD	JHE1210, 170(2012)	1795±60		
Instanton calculations	PLB577,61(2003)	~1980		
Dyson-Schwinger and Bethe-Salpeter equations	EPJC80,1077(2020)	1850±130		
Dual models	PRD104,034016(2021)	~1920		

Production partial width $B_{J/\psi\to\gamma G} = (5.8\pm1.0)\times10^{-3}$

21.06.2023

Lattice calculations (PRL110, 021601 (2013)) $B_{J/\psi \to \gamma G} = (3,8 \pm 0.9) \times 10^{-3}$

- Cross-section measurement of the prompt inclusive J/ψ and ψ (2S) production at center-of-mass energies from 3.81 to 4.95 GeV
 - the paper draft approved by internal referring, ongoing CWR
- Phase between strong and electromagnetic amplitudes in J/ψ decays
 analysis under internal review
- Model-independent partial wave analysis of $\psi(2S) \rightarrow \gamma \pi^{_0} \pi^{_0}$
 - the first stage presented to the collaboration
- FF of c-quark

<u>21.06.2023</u>

Conference talks

- I. Denisenko, "Light hadron spectroscopy at BESIII", 19-th Lomonosov Conference on Elementary Particle Physics, Moscow, 22 28, August 2019.
- Ю. Нефедов, "Обзор эксперимента BESIII", сессия-конференция СЯФ ОФН РАН, Новосибирск, март 2020.
- I. Denisenko, "Partial wave analysis of $J/\psi \rightarrow K+K-\pi_0$ ", 9th International Conference on New Frontiers in Physics (ICNFP 2020), Crete, 4-12 October 2020.
- I. Denisenko, "Partial wave analysis of J/ψ → K+K-π₀", 5-th International Conference on Particle Physics and Astrophysics (ICPPA 2020), Moscow, 5-9 October 2020.
- I. Denisenko, "Partial wave analysis of J/ψ → K+K-π^o", XXIV International Scientific Conference of Young Scientists and Specialists (AYSS-2020), 9-13 November 2020.
- O. Bakina, poster "Proposal for the prompt inclusive J/ψ production measurement at future Super c-tau factories", Workshop on future Super c-tau factories, 15-17 November 2021.
- O. Bakina, poster "Studies of charmonium decay from BESIII", 30th International Symposium on Lepton Photon Interactions at High Energies, 10-14 January 2022.

- S. Pogodin, "Search for proton-antiproton bound state in the reaction e⁺e⁻ → 2p2p⁻ in the BESIII experiment", BSc thesis, Dubna, 2020.
- S. Pogodin, "Branching fraction of J/psi → φη (η → γγ, η → π+π-π0) at the BESIII experiment", MSc thesis, Dubna, 2022.
- P. Egorov, "Measurement of the cross-section of e+e-→ηπ+π- in energy range 2.00 - 3.08 GeV", MSc thesis, Dubna, 2022.
- I. Denisenko, "Light hadron spectroscopy and search for exotic states in the $J/\psi \rightarrow K^+K^-\pi^0$ decay and radiative J/ψ decays to two pseudoscalars", PhD thesis, 2021.

- Maintenance of the BESIII offline software and analysis tools.
- Distributed computing
- New R&D of algorithms for reconstruction of events using deep learning methods
 - Two new approaches to tracking using ML were developed in scope of the joint RFBR-NSFC project No. 19-57-53002
 - Existing well-established event reconstruction of the BESIII experiment based on classical algorithms allows to study the performance of ML algorithms, to investigate stability of these methods against noise and other data imperfections, and to elaborate methods for effective estimation of the systematic uncertainty connected with the use of the ML tools.
 - Will be useful not only for BESIII, but also for any other collider experiment including the ones of the NICA project.

Publications:

• CRM, 2020, vol. 12, no. 6, 1361

21.06.20

• JINST 17 (2022) 12, P12023

Computing resources	Distribution by year						
	1 st year	2 nd year	3 rd year	4 th year	5 th year		
Data storage (TB)							
- EOS	-	-	-	-	-		
- Ribbons	-	-	-	-	-		
Tier 1 (core-hour)	-	-	-	-	-		
Tier 2 (core-hour)	120000	120000	120000	120000	120000		
SC Talker (core-hour)							
- CPU	-	-	-	-	-		
- GPU	-	-	-	-	-		
Clouds (CPU cores)	60000	60000	60000	60000	60000		

Names of costs, resources, sources of funding		Cost (thousands of dollars) resource requirements	Cost, distribution by year1st2nd3rd4th5thyearyearyearyearyear				
	International cooperation (IC)	125	25	25	25	25	25
	Materials						
	Equipment and third-party services (commissioning)	50	10	10	10	10	10

The main costs are travel expenses for

- 1) data taking shifts and technical work
- 2) data analysis, presentation of results, and preparation of publication within the Collaboration
- 3) conference talks
- 4) hardware for machine learning

Thank you!

Backup

Prompt inclusive J/ψ production (I)

Goal:

- Test the NRQCD factorization hypothesis: the independence of Long Distance Matrix Elements (LDME) that describe the hadronization of the cc pair from the process (hadron-hadron collisions, electroproduction, or e+e⁻ annihilation);
- Clarify the contribution of the color octet channel in the range of √s below the J/ψcc threshold (~6 GeV): the color-octet LDMEs are non-zero if σ >10 pb at √s = 4.6 ~ 5.6 GeV (Eur. Phys. J. C (2017) 77: 597);
- > Test if unknown channels/states exist.

Data only available at $\sqrt{s} = 10.6$ GeV: $\sim 2.5 \pm 0.3$ pb (BaBar)

- $\sim 1.5 \pm 0.2 \text{ pb} (Belle)$
- $\checkmark~1.9\pm0.2~\text{pb}~(\text{CLEO})$

Figure: NRQCD factorization. The LDMEs $\langle O^{H}_{n} \rangle$ are determined from experimental data.

Prompt inclusive J/ψ production (II)

Data: $\mathcal{L} = 22 \text{ fb}^{-1}, \sqrt{s} = 3.8 - 4.95 \text{ GeV}$

Channel: $J/\psi \rightarrow \mu^+\mu^-, \psi(3686) \rightarrow J/\psi \pi^+\pi^-, \chi_{cJ} \rightarrow \gamma J/\psi, (J = 1, 2)$

- > Prompt J/ψ originates from sources other than known decays or initial-state radiation (ISR).
- > Major background sources:
 - inclusive J/ ψ decays of $\psi(3686)$ and $\chi_{cJ},\,(J=1,\,2);$
 - ISR return to the J/ψ and $\psi(3686)$ resonances.
- > The preliminary result for the prompt inclusive J/ψ production in the range $4.5 \sim 4.7$ GeV is

 $\sigma = 13.2 \pm 2.1_{\mathrm{stat}} \pm 3.4_{\mathrm{syst}} \mathrm{~pb}$

Analysis status: approved by internal referees, ongoing CWR.

Figure: Yield of J/ψ from different sources normalized to corresponding luminosity.

Figure: Prompt and total exclusive J/ψ cross-sections.

Mixing angle between strong and EM amplitudes in $J/\psi \rightarrow \phi \eta$ (I)

- ► The existing measurements of $B(J/\psi \rightarrow \phi \eta)$ are ambiguous (PDG-2021);
- We plan to use the precise measurements of the $B(J/\psi \rightarrow \varphi \eta)$ to improve the estimation of the mixing angle between the strong and electromagnetic amplitudes in the analysis of the energy dependence of $e^+e^- \rightarrow \varphi \eta$ cross-section in the scan data around the J/ψ peak.

Formulas of cross section for lineshape fit of $e^+e^- \rightarrow \phi \eta$

$$\sigma_{\rm born}(s) = |\mathcal{A}_{cont.} + \mathcal{A}_{\gamma} + \mathcal{A}_{3g}|^2 = \frac{\sigma_0}{s^2} \left| 1 + \frac{3/\alpha \sqrt{s \, \Gamma_e \Gamma_\mu}}{(s - M^2) + i \, \sqrt{s} \, \Gamma} \cdot (1 + A e^{i \, \varphi}) \right|^2 \times \left[\frac{|P|}{\sqrt{s}} \right]^2$$

where
$$\sigma_0 = \frac{4\pi \alpha^2 s}{3} \cdot \frac{Br(J/\psi \to \phi \eta)}{Br(J/\psi \to \mu \mu)} \cdot \frac{1}{|1 + Ae^{i\varphi}|^2} \left[\frac{\sqrt{s}}{|P|}\right]^2$$

Mixing angle between strong and EM amplitudes in $J/\psi \rightarrow \phi \eta$ (II)

Data: 448M $\psi(3686)$ in 2009 and 2012, **2.2B** $\psi(3686)$ in 2021 **Channel:** $\psi(3686) \rightarrow \pi^+\pi^- J/\psi, \ J/\psi \rightarrow \varphi \eta, \ \varphi \rightarrow K^+K^-, \eta \rightarrow \gamma \gamma$

- > We need to use data in which there is no mixing of $J/\psi \rightarrow \varphi \eta$ and $e^+e^- \rightarrow \varphi \eta$.
- > A good description of the invariant mass of K^+K^- is obtained only under the assumption of interference $J/\psi \rightarrow \varphi \eta$ with other processes decaying to the same final state.
- $\,\,{}^{\scriptscriptstyle >}\,$ The preliminary result for $M(K^+K^{\mathchar`}) < 1.08~{\rm GeV/c^2\,is}$

 ${
m B}({
m J}/\psi o \varphi \eta) = (8.52 + 0.37/\text{-}~0.43_{_{
m stat}} \pm 0.14_{_{
m syst}}) imes 10^{-4}$

Analysis status: internal review of the BESIII collaboration.

Compariso	on with previous measurement
BES2	$(8.99\pm0.18\pm0.89) imes10^{-4}$
DM2	$(6.4 \pm 0.4 \pm 1.1) \times 10^{-4}$
MARK-III	$(6.61\pm0.45\pm0.78) imes10^{-4}$
PDG2020	$(7.4 \pm 0.8) imes 10^{-4}$

Figure: Combined fit to the $M(K^+K^-)$ to determine the number of ϕ mesons.