Приложение 3.

Форма открытия (продления) Проекта / Подпроекта КИП

НАУЧНО-ТЕХНИЧЕСКОЕ ОБОСНОВАНИЕ ОТКРЫТИЯ / ПРОДЛЕНИЯ ПРОЕКТА / ПОДПРОЕКТА КРУПНОГО ИНФРАСТРУКТУРНОГО ПРОЕКТА ПО НАПРАВЛЕНИЮ ИССЛЕДОВАНИЙ В ПРОБЛЕМНО-ТЕМАТИЧЕСКОМ ПЛАНЕ ОИЯИ

1. Общие сведения о проекте / подпроекте крупного инфраструктурного проекта (далее КИП)

1.1. Шифр темы / КИП (для продлеваемых проектов) — шифр темы включает дату открытия, дата окончания не указывается, т. к. она определяется сроками завершения проектов в теме.

04-2-1126-2015

1.2. Шифр проекта / подпроекта КИП (для продлеваемых проектов и подпроектов)

1.2. Лаборатория Лаборатория ядерных проблем им. В. П. Джелепова

1.3. Научное направление Ускорители, детекторы, R&D, прикладные исследования

1.4. Наименование проекта / подпроекта КИП

Создание и развитие тестовой зоны для методических исследований детекторов на линейном ускорителе электронов в ЛЯП

1.5. Руководитель(и) проекта / подпроекта КИП

М.И. Госткин

1.6. Заместитель(и) руководителя проекта / подпроекта КИП (научный руководитель проекта / подпроекта КИП

Абдельшакур Эль Саид Мохаммед Абу Эльазм

2. Научное обоснование и организационная структура

2.1. Аннотация

Научно-методические исследования детекторов элементарных частиц являются необходимым условием прогресса ядерной физики и физики высоких энергий. Подготовка экспериментов на будущих ускорителях требует создания новых типов детекторов, способных справляться с

большими загрузками и обеспечивать требуемую точность и надежность регистрации частиц. Разработка новых детекторов также важна для прикладных исследований, опирающихся на использование источников синхротронного излучения и интенсивных рентгеновских установок. В частности, создание в странах-участницах ОИЯИ новых источников СИ и сверхмощных лазеров обуславливают создание экспериментальных станций на основе детекторов с высоким пространственным и энергетическим разрешением.

Возможность тестирования прототипов детекторов на тестовых пучках играет решающую роль при научно-методических исследованиях. Отсутствие установок с тестовыми пучками электронов в ОИЯИ значительно замедляет прогресс в создании новых типов электромагнитных калориметров и координатных детекторов для будущих экспериментов МРД и SPD на коллайдере NICA, фотонных детекторов изображений, радиационно-стойких детекторов и дозиметрических приборов. Целью представленного проекта является создание на основе линейного ускорителя электронов ЛИНАК-200 инфраструктуры для методических исследований на пучках электронов с энергией 20 МэВ и 200 МэВ. Предусматривается ЛИНАК-200 для проведения экспериментов по использование тестовой зоны на основе прикладных исследований (радиационное изучению фотоядерных реакций, для материаловедение, радиационная генетика и т.п.).

2.2. Научное обоснование (цель, актуальность и научная новизна, методы и подходы, методики, ожидаемые результаты, риски)

Цель проекта: Создание и развитие инфраструктуры тестовой зоны на основе ускорителя ЛИНАК-200 тестовых пучков электронов с энергий до 220 МэВ для исследования свойств детекторов элементарных частиц для использования группами ОИЯИ и институтов государств-членов ОИЯИ, а также для внешнего эксперимента AMBER на SPS CERN.

Научно-методические исследования по созданию новых типов детекторов являются необходимым условием дальнейшего развития экспериментальной физики атомного ядра и элементарных частиц. В частности, подготовка экспериментов на ускорителях нового поколения (ILC, CLIC, CEPC, HL-LHC) требует разработки новых типов детекторов, способных работать в условиях высокой загрузки и обеспечить при этом требуемые быстродействие, точность и надежность регистрации [1-4]. В отличие от экспериментов на LEP, Тэватроне и LHC, на первое место среди требований часто выходит радиационная стойкость, что обусловлено как длительным временем работы проектируемых установок, так и гораздо более высокой, по сравнению с существующими ускорительными комплексами, загрузкой в результате высокой энергии пучков и светимости будущих ускорителей.

Очевидно, что разработки новых детекторов не ограничиваются только будущими коллайдерными экспериментами. В качестве примеров можно привести эксперименты по поиску безнейтринной конверсии мюона в электрон, в которых требуется выделение крайне слабого сигнала от электронов с определенной энергией [5, 6], а также нейтринные эксперименты нового поколения, для которых разрабатываются детекторы с высоким временным разрешением, способные значительно подавить фоновые события за счет выделения направления движения нейтрино путем разделения черенковского света и фотонов от сцинтилляции [7]. При испытании детекторов такого рода представляет трудность высокая интенсивность пучка существующих ускорителей, приводящая к наложениям сигналов от многих ускоренных частиц. Для устранения этой проблемы важно иметь возможность получать пучки ускоренных частиц с низкой интенсивностью (несколько десятков или сотен электронов в секунду), что позволит регистрировать отклик детектора на единичную падающую частицу.

Создание новых типов детекторов элементарных частиц важно не только для физики высоких энергий. Будущее таких наук, как биология, материаловедение и медицина сегодня

тесно связано с исследованиями с помощью источников синхротронного, рентгеновского излучения и других ядерно-физических методов. В ближайшее десятилетие ожидается запуск новых синхротронных источников и сверхмощных импульсных лазеров, создаваемых в государствах-членах ОИЯИ.

При изучении характеристик прототипов детекторов в ходе научно-методических исследований, а также при контроле качества во время мелкосерийного производства непременно используются источники элементарных частиц. Наиболее доступными и распространенными являются космические лучи и радионуклидные источники, однако использование пучков заряженных частиц на ускорителе обладает рядом неоценимых преимуществ, таких как высокая энергия и плотность потока частиц, возможность их надежной идентификации, возможность контроля энергии частиц, временная И координатная привязка. Некоторые характеристики детекторов просто невозможно определить без использования пучков частиц с ускорителей. Однако, в настоящее время возможности тестовых пучков частиц в ЛЯП и в ОИЯИ в целом крайне ограничены. Получение частиц с энергией 100 МэВ и выше возможно лишь на нуклотроне, при этом доступны только пучки протонов и тяжелых ионов. Источник электронов высокой энергии и хорошего качества в ОИЯИ отсутствует. Географически ближайшим источником электронов такого рода является синхротрон C-25P «Пахра» ФИАН на энергию 1 ГэВ, запущенный в 1974 году, который не имеет оборудованных тестовых пучков.

Технические характеристики ускорителя ЛИНАК-200, созданного в ОИЯИ, позволяют создать на его основе развитую систему тестовых пучков для научно-методических исследований детекторов в интересах ЛЯП, а также других лабораторий и государствчленов Института.

Доступные тестовые пучки электронов.

В настоящее время в мире существует около десятка ускорительных центров, в которых возможны измерения с тестовыми пучками электронов (см. таблицу). Однако, работа на тестовых пучках в международных центрах влечет за собой затраты на перевозку и обслуживание оборудования, а также задержки, поскольку смены на тестовых пучках, как правило, распределены на годы вперед. В настоящее время часть международных ускорительных центров недоступна сотрудникам ОИЯИ (например, DESY-II (Германия)).

Научный центр	Год создания ускорителя/пучков	Тип частиц	Диапазон энергий [МэВ]	dP/P [%]	Количество оборудованных линий
ВТГ (Фраскати, 1997/2003 Италия)		e [±]	25-750	1	1
ELPH (Тохоку, Япония)	1997/2006	e [±]	< 850	1	1
ВЕРС-II (ИФВЭ АН 2008 КНР, Пекин)		е ⁻ е [±] (втор.)	1100 - 1500 400 - 1200	1	3
FTBL (КЕК, Япония)	1998/2007	e	500-3400	0,4	1
DESY-II (Германия)		e	1000-6000	1	3

CERN PS (Швейцария)	1960	е, адроны, μ	(1-15)*10 ³		4
CERN SPS (Швейцария)	1976	е, адроны, μ	(10-400)*10 ³		4
FTBF (FNAL, США)	1999	e ⁻ , π ⁻ , μ	$(1-66)*10^3$		1
SLAC (CIIIA)	1999	е ⁻ е, адроны (втор.)	13,6*10 ³ (0,1- 13,6)*10 ³	0,1- 1,3	1
ИФВЭ (Протвино, РФ)	1967	е, адроны, μ	(1-45)*10 ³		4
ИЯФ СО РАН (Новосибирск, РФ)	1994/2012	e	100-3500	1,8-2	1
ФИАН (Троицк, РФ)	1974	e	300-1300		0
ЕрФИ (Армения)	1967	e	75 6000		0
LINAC-200 (ОИЯИ)	1975/2023	e	10 - 200	1	2

Каналы для вывода пучка электронов на ускорителе ЛИНАК-200.

В настоящее время существует два канала вывода пучка электронов ускорителя ЛИНАК-200. Первый канал позволяет проводить измерения с тестовым пучком электронов с энергией 10-25 МэВ. Второй 40-200 МэВ.

Энергетический разброс пучка не превышает 1%. Обеспечена возможность фокусировки пучка с размером фокусного пятна менее 1 мм, а также возможность дефокусировки для обеспечения равномерной засветки в области размером 20 см х 20 см. Интенсивность пучка варьируеться в диапазоне от единиц до 10^{13} e⁷/c и изменяется не более чем на 5% при проведении измерений.

Каждый канал вывода пучка включают в себя поворотный магнит, квадрупольные линзы для фокусировки пучка, горизонтальный и вертикальный коллиматоры и вакуумный тракт для транспортировки пучка и вывода его в атмосферу.

Каждый тестовый пучок должен быть оборудован аппаратурой для измерения и мониторирования характеристик пучка (энергии, координаты направления, И интенсивности). Для этого будут применяться калориметры на основе BGO, пластиковых сцинтилляторов, координатные годоскопы и детекторы измерения профиля пучка, проволочныые камеры, цилиндры Фарадея, ионизационные камеры и индукционные датчики. Тестовые пучки должны иметь необходимый набор штатных креплений для облучения детекторов, систему позиционирования исследуемых образцов в пучке, набор коллиматоров для формирования требуемых геометрических параметров выведенного пучка электронов и необходимую локальную защиту для уменьшения радиационной нагрузки и улучшения фоновых условий при проведении измерений.

Важной задачей при создании каналов вывода тестовых пучков является систематическое исследование характеристик выведенного пучка электронов и математическое моделирование для оптимизации условий измерений.

Оснащение тестовой зоны.

1. Перемещение детекторов.

Выводы пучка оборудуются устройствами позволяющими перемещать в горизонтальной и вертикальной плоскостях расположенные на них исследуемые детекторы, облучаемые образцы, оборудование массой до 100 кг. Узел перемещения по горизонтали LSDP-500FG. Узел для перемещений по вертикали LSSS-XW-400-400А состоит из системы вертикальных направляющих, винтовой передачи, редуктора мотора и шагового двигателя. Имеет диапазон перемещений 400мм и стол для крепления 400х400мм. Габаритные размеры — 500х400х322 мм3, Линейность – 150 микрон.

2. Дистанционный визуальный контроль - доступен с помощью видеокамер.

3. Высокоскоростные газоразрядные проволочные камеры (монитор пучка).

Узкозазорные высокоскоростные координатные пропорциональные камеры [8] будут использоваться для контроля профиля и интенсивности пучков на ускорителе ЛИНАК-200, а также для восстановления треков заряженных частиц. Рабочее плато по высокому напряжению составляет 1600 В, что обеспечивает возможность работы камеры в одном из четырех режимов: пропорциональном, ограниченной пропорциональности, плазменном и самогасящемся стримерном.

I еометрические параметры камеры:	
Чувствительная площадь:	115 х 115 мм2
Количество анодных проволочек:	128
Шаг анодных проволочек :	0.9 мм
Расстояние анод – катод:	1.3 мм
Внешний размер камеры:	236 х 236 мм2
Толщина камеры:	37 мм
Скорость счёта для растянутого пучка:	5 х 10^7 см-2
Временное разрешение (джиттер):	4.5 x 10-9 c

аад) и MT-48D-0КА-2 (шифровад)
48
49
до ~16 мс
1 нс
1024 32-разрядных слов
~1000 нс
232 нс
+5 B - 2,1 A; -5 B - 0,3A
ОКА-2БК (8 каналов)
6 шт

Параметры ИС ОКА-2БК: Количество каналов 8 CSP+Shaper+BLR+Discriminator+MS+LVDS Структура канала Входное сопротивление, Оhm 60 Коэффициент преобразования, mV/fC 50÷80 Время формирования (peaking time), ns 10÷12 Ширина сигнала по основанию на выходе Shaper и BLR, ns 26 ENC (r.m.s.), fC 650+40e/pF Управление порогом Общее Минимальный порог, fC Диапазон регулировки порогов, fC 3÷15 Разброс порогов (сигма), fC 1 Стандарт выходных сигналов LVDS Длительность выходного сигнала, ns 150 Задержка выходного сигнала, ns 11ns Перекрестные наводки между каналами, % 0.5 Общий Тестовый вход Внутренняя тестовая емкость, pF 0.2

Планируется работа с готовыми газовыми смесями.

- **4.** Детектор-профилометр простейшей конструкции: работает на совпадении сигналов от 2-х счётчиков (HAMAMATSU H10720-20) со сцинтиллирующими стрипами 2х2х110мм
- 5. Для определения положения пучка возможно использование люминофорных экранов, радиохромной пленки. Также используется система из трех или пяти ионизационных камер, которая устанавливается на устройстве для перемещения и позволяет с высокой точностью контролировать введение облучаемого объекта в центр пучка электронов или тормозного излучения. Для измерения токов с ионизационных камер планируется использовать прибор TetrAMM. [9]

6. Измерение энергии.

Измерение энергии и калибровка выходного канала являются необходимым этапом при проведении радиационных тестов. Стандартным методом определения энергии пучка является использование для вывода пучка дипольного магнита с известной напряженностью магнитного поля, однако в данном случае такие измерения были технически крайне затруднительными, поскольку требовали разборки канала. Поэтому был использован альтернативный новый метод измерения энергии пучка электронов, разработанный физиками Лаборатории Ядерных Реакций ОИЯИ. Метод [10] основан на измерении соотношения активностей насыщения нескольких продуктов фотоядерных реакций, полученных в результате активации индиевых фольг фотонами тормозного излучения пучка электронов, ускоренных на микротроне МТ-25. Физической особенностью микротронов является то, что ускоренные с их помощью пучки электронов имеют высокую моноэнергетичность и известную энергию. Была проведена калибровка сцинтилляционных детекторов из LaBr, BGO пластического сцинтиллятора в пучке электронов ЛИНАК-200 и точно измерены энергетические спектры выходного электронного пучка указанными детекторами в диапазоне до 25 МэВ. [11] Для измерения энергии пучков выведенных электронов после прохождения коллиматоров, фильтров и др. и определения фоновых условий предлагается использовать детекторы, на основе пластиковых сцинтилляторов. Например, имеется в наличии детектор с пластическим сцинтиллятором

(изготовлен в РХЛ ЛЯП, D=100мм, L=400мм), ФЭУ НАМАМАТSU R6091.

Предполагается также использование детекторов со сцинтиллятором BGO-пирамида высотой 57 мм.

Аппаратура для измерения характеристик пучка.

- 1. Keithley(цифровой электрометр) Model 6517В.
- 2. Осциллограф цифровой 2 канальный.
- 3. Устройство оцифровки сигналов DRS-4.
 - Цифровой осциллограф DRS-4 предназначен для оцифровки сигналы от ФЭУ или других детекторов, имеет возможность записи и построения спектров. DRS-4 имеет 4 входных канала с аналоговой полосой пропускания 350 МГц, позволяет оцифровывать сигналы со скоростью до 5×109 выборок в секунду. Триггер может быть внешним (TTL-сигнал), либо устанавливаться по уровню какого-либо входного канала, либо комбинации каналов. Амплитуда оцифровываемых сигналов в DRS-4 ограничена уровнем 1 В, при необходимости, для уменьшения амплитуды сигнала ниже 1 В есть возможность использовать аттенюаторы.
- 4. 2-х канальный блок питания с выходным напряжением (+/-) 1 до 3кВ
- 5. 8-х канальный блок питания с выходным напряжением (+/-) 1 до 4кВ

На канале 20 МэВ была собрана установка для облучения детекторов и контроля дозы

Измерение заряда в цилиндре Фарадея позволяет оценить поток электронов и рассчитать поглощенную дозу. Для этого используется измеритель Keithley 6517B, включенный в режиме измерения заряда. Поскольку при работе ускорителя в ускорительном зале достаточно высокий уровень радиации, для удаленного управления и автоматического сбора данных для прибора Keithley в среде разработки «LabView» была написана специальная программа.

Помимо выводов пучка электронов на 20 и 200 МэВ, составной частью тестовой зоны является пультовая пользователей, в которой располагается оборудование для управления и контроля параметров экспериментальной аппаратуры.

В пультовой пользователей располагаются высоковольтные блоки питания экспериментальной аппаратуры, компьютеры для управления и набора данных. Связь пультовой с выводами пучка осуществляется с помощью специально проложенных кабелей и сети интернет.

В тестовую зону входит также помещение 1126 корпуса 118 ЛЯП для измерения спектров облученных образцов, В котором расположен гамма спектрометр, основой которого является HPGe детектор Ortec GMX20-70-CW. С энергетическим разрешение (FWHM) для 1.33 МэВ (Co-60): 1.85 кэВ

Детектор находится в вертикальном криостате с жидким азотом.

Система набора данных со спектрометрической электроникой в стандарте NIM.

Детектор окружен частичной пассивной защитой, сделанной из свинца.

Хранение облученных образцов в специальном сейфе.

Обслуживанием данного спектрометра занимается НЭОЯСиРХ ЛЯП под руководством Е.А. Якушева

В оборудованной тестовой зоне планируется проведение

научно-методических работ по созданию детекторов элементарных частиц для различных экспериментов. Например:

1. Исследование кремниевых пиксельных детекторов для вершинного трекера экспериментов MPD и SPD.

2. Калибровка модулей электромагнитного калориметра для эксперимента SPD.

3. Исследование характеристик детекторов для строу-трекера установки SPD.

4. Исследование характеристик (эффективность, пространственное разрешение, максимальная загрузка) газовых детекторов типа bulk Micromegas для экспериментов SPD и AMBER.

5. Калибровка детекторов для эксперимента СОМЕТ на пучках электронов низкой интенсивности с энергией до 100 МэВ .

- 6. Прикладные задачи (радиационное матераловедение, радиационная генетика).
- 7. Калибровка дозиметрических приборов в интересах СНИИП.
- 8. Проведения экспериментов по изучению фотоядерных реакций

Ожидаемые результаты:

В результате выполнения проекта на ускорителе ЛИНАК200 ЛЯП ОИЯИ появится оборудованная тестовая зона для проведения научно-методических и научно-экспериментальных работ группами ОИЯИ и институтов государств-членов ОИЯИ.

Риски выполнения – недостаточное финансирование, логистические трудности с приобретением материалов и оборудования для развития тестовой зоны.

Литература

- 1. Brau J. et al., ILC Reference Design Report Volume 1 Executive Summary (2007) arXiv:0712.1950
- 2. Linssen L. et al., Physics and Detectors at CLIC: CLIC Conceptual Design Report (2012) CERN-2012-003, ANL-HEP-TR-12-01, DESY-12-008, KEK-REPORT-2011-7, arXiv:1202.5940
- 3. CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector (2015) IHEP-CEPC-DR-2015-01, IHEP-TH-2015-01, IHEP-EP-2015-01
- 4. D.Contardo, Detector R&D for the HL-LHC upgrade (2015) PoS (EPS-HEP2015) 018
- 5. Abrams R.J. et al., Mu2e Conceptual Design Report (2012) Fermilab-TM-2545, arXiv:1211.7019

- 6. Cui Y.G. et al., Conceptual design report for experimental search for lepton flavor violating μ-→econversion at sensitivity of 10-16 with a slow-extracted bunched proton beam (COMET) (2009) KEK-2009-10
- Alonso J.R. et al., Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator (2014) BNL-106082-2014-JA, arXiv:1409.5864
- 8. E.M. Gushin, E.V. Komissarov, Yu.V. Musienko, A.A. Poblaguev, V.Z. Serdyuk,
 - B.Zh. Zalikhanov. Fast beam chambers of the set-up ISTRA-M. NIM, A531,1994,p.345
- 9. https://www.caenels.com/product/tetramm/
- 10. M. Krmar et al., Nuclear Instruments and Methods A901 (2018) 133
- Beam energy measurement on LINAC-200 accelerator and energy calibration of scintillation detectors by electrons in range from 1 MeV to 25 MeV / M. Krmar, Y. Teterev, A.G. Belov, S. Mitrofanov, S. Abou El-Azm, M. Gostkin, V. Kobets, U. Kruchonak, A. Nozdrin, S. Porokhovoy, M. Demichev // Nuclear Inst. and Methods in Physics Research – 2019 – A.935 – p.83-88 – ISSN 0168-9002

2.3. Предполагаемый срок выполнения

5 лет

2.4. Участвующие лаборатории ОИЯИ ЛЯП, ЛФВЭ, ЛЯР

2.4.1. Потребности в ресурсах МИВК

D	Распределение по годам						
вычислительные ресурсы	1 год	2 год	3 год	4 год	5 год		
Хранение данных (ТБ)							
- EOS							
- Ленты							
Tier 1 (ядро-час)							
Tier 2 (ядро-час)							
СК «Говорун» (ядро-час)							
- CPU							
- GPU							
Облака (СРИ ядер)							

2.5. Участвующие страны, научные и научно-образовательные организации

Организация	Страна	Город	Участники	Тип соглашения
University of Novi Sad, Serbia	Serbia	Novi Sad	M.Krmar	

2.6. Организации-соисполнители (те сотрудничающие организации/партнеры без финансового, инфраструктурного участия которых выполнение программы исследований невозможно. Пример — участие ОИЯИ в экспериментах LHC в CERN)

3. Кадровое обеспечение

3.1. Кадровые потребности в течение первого года реализации

<u>№№</u> п/п	Категория работника	Категория Основной персонал, работника сумма FTE	
1.	научные работники	4.9	0
2.	инженеры	2.2	0
3.	специалисты	θ	θ
4.	служащие	θ	θ
5.	рабочие	θ	0
	Итого:	7.1	0

3.2. Доступные кадровые ресурсы

3.2.1. Основной персонал ОИЯИ

NºNº	Категория	ФИО	Подразделение	Должность	
п/п	работников				
1.	научные работники	Госткин М.И.	ЛЯП	Нач. сектора	
2.	научные работники	Абдельшакур	ЛЯП	снс	
		Саид			
3.	научные работники	Жемчугов	ЛЯП	Зам.	
		A.C.		Начальника	
				НЭОВП	
4.	научные работники	Кручонок В.Г.	ЛЯП	СНС	
5.	научные работники	Ноздрин А.А.	ЛЯП	СНС	
6.	научные работники	Демичев М.А.	ЛЯП	нс	
7.	инженеры	Пороховой	ЛЯП	Ведущий	
		С.Ю.		инженер	
8.	инженеры	Харченко	ЛЯП	старший	
		Д.В.		инженер	
9.	инженеры	Демин Д.Л.	ЛЯП	главный	
				инженер	
				установки	
10.	научные работники	Кобец В.В.	ЛФВЭ	начальник	
				сектора	

11.	научные работники	Митрофанов	ЛЯР	Начальник
		C.B.		группы
12.	научные работники	Тетерев Ю.Г	ЛЯР	снс

3.2.2. Ассоциированный персонал ОИЯИ

<u>№№</u> п/п	Категория работников	Организация-партнер	Сумма FTE
1.	научные работники		
2.	инженеры		
3.	специалисты		
4.	рабочие		
	Итого:		

4. Финансовое обеспечение

4.1. Полная сметная стоимость проекта / подпроекта КИП 1075 тысяч долларов США. Прогноз полной сметной стоимости (указать суммарно за весь срок, за исключением ФЗП). Детализация приводится в отдельной форме.

4.2. Внебюджетные источники финансирования

Предполагаемое финансирование со стороны соисполнителей/заказчиков — общий объем.

Руководитель проекта / подпроекта КИП _____/

Дата представления проекта / подпро	екта КИП в ДНОД	ξ	
Дата решения НТС Лаборатории	_30 марта 2023	, номер документа	_2023-5
Год начала проекта / подпроекта КИІ	Ι		

(для продлеваемых проектов) — год начала работ по проекту _____

	Наименования затрат, ресурсов,		Стоимость (тыс. долл.)	Стоимость, распределение по годам				
	ист	очников финансирования	в ресурсах	1 гол	2 ГОЛ	3 ГОЛ	4 ГОЛ	5 ГОЛ
		Международное сотрудничество (МНТС)		15	15	15	15	15
		Материалы		70	70	70	70	70
		Оборудование и услуги сторонних организаций (пуско-наладочные работы) Пуско-наладочные работы		130	130	130	130	130
		Услуги научно- исследовательских организаций						
		Приобретение программного обеспечения						
		Проектирование/строительство						
		Сервисные расходы (планируются в случае прямой принадлежности к проекту)						
ые	ు	Ресурсы						
димі рсы	[ормо-ча	 сумма FTE, 						
oбxo pecy		– ускорителя/установки,						
He	H	– реактора,						
нансирования	Бюджетные средства	Бюджет ОИЯИ (статьи бюджета)	1075	215	215	215	215	215
Источники фи	Внебюджет (доп. смета)	Вклады соисполнителей Средства по договорам с заказчиками Другие источники финансирования						

Предлагаемый план-график и необходимые ресурсы для осуществления Проекта / Подпроекта КИП

Руководитель проекта / подпроекта КИП _____/

Экономист Лаборатории

_____/

ЛИСТ СОГЛАСОВАНИЙ ПРОЕКТА / ПОДПРОЕКТА КИП

НАИМЕНОВАНИЕ ПРОЕКТА / ПОДПРОЕКТА КИП

УСЛОВНОЕ ОБОЗНАЧЕНИЕ ПРОЕКТА / ПОДПРОЕКТА КИП

ШИФР ПРОЕКТА / ПОДПРОЕКТА КИП

ШИФР ТЕМЫ / КИП

ФИО РУКОВОДИТЕЛЯ ПРОЕКТА / ПОДПРОЕКТА КИП

СОГЛАСОВАНО			
ВИЦЕ-ДИРЕКТОР ИНСТИТУТА			
	ПОДПИСЬ	ФИО	ДАТА
ГЛАВНЫЙ УЧЕНЫЙ СЕКРЕТАРЬ ИНСТИТУТА			
	подпись	ФИО	ДАТА
ГЛАВНЫЙ ИНЖЕНЕР			
	подпись	ФИО	ДАТА
ЛИРЕКТОР ЛАБОРАТОРИИ			
<u></u>	ПОДПИСЬ	ФИО	ДАТА
ГЛАВНЫЙ ИНЖЕНЕР ЛАБОРАТОРИИ			
	ПОДПИСЬ	ФИО	ДАТА
VЧЕНЫЙ СЕКРЕТАРЬ ПАБОРАТОРИИ			
	ПОДПИСЬ	ФИО	ДАТА
DVICODOUITE III TEMI I / VIII			
РУКОВОДИТЕЛЬ ТЕМЫ/ КИП	ПОДПИСЬ	ФИО	ДАТА
РУКОВОДИТЕЛЬ ПРОЕКТА / ПОЛПРОЕКТА КИП			
	ПОДПИСЬ	ФИО	ДАТА

ОДОБРЕН ПКК ПО НАПРАВЛЕНИЮ