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Types of Colliding Beam Facilities

(a) (b) (c)

/____._.PQ"‘\

(d)

B Since 60’s colliders have been the major instrument in the particle
physics
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Collision Energy and Luminosity
B Gain in collision energy for ultra-relativistic particles
¢ One particle stationary:

E_~~2Emc’®, E>mc

¢ Both particles move:
E_=2F

cm

(120 times gain for the LHC)

B Number of events 1in collisions:

d—N:LG
dt

B Dectectors want constant luminosity
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Colliders Landscape

B 59 years since 1st collisions
¢ Spring 1964 AdA and VEP-1
B 3] operated since
B 7 in operations now
¢ S-KEKB, VEPP-2000,
VEPP-4M, BEPC, DAFNE
¢ LHC, RHIC
B | under construction
¢ NICA
B One 1n a project phase
¢ EIC
B Far plans
¢ Higgs/Electroweak factories
o ILC
e FCC:e'e
¢ Frontier (E >> Ernc)
o FCC:pp

V. Shiltsev and F. Zimmermann: Modem and future colliders

Species | Ey, GeV | C, m Dok Years
AdA ete 0.25 4.1 16 1964
VEP-1 | e7e” | 0.16 2.7 | 5x10%" | 1964-68
CBX e e~ 0.5 11.8 | 2 x 10%® | 1965-68
VEPP-2 | ete 067 | 11.5 | 4 x 10%2® | 1966-70
ACO ete™ 0.54 255) 1G7® 1967-72
ADONE | ete™ 1.5 105 | 6 x 10%° | 1969-93
CEA ete~ 3.0 226 0.8 x 10%®| 1971-73
ISR pp 31.4 | 943 [1.4 x 10*2| 1971-80
SPEAR | ete™ 4.2 234 |1.2 x 1031| 1972-90
DORIS | eTe™ 5.6 289 (3.3 x 1031 | 1973-93
VEPP-2M | eTe™ 0.7 18 | 5 x 10%° [1974-2000
VEPP-3 | eTe™ 1.55 74 | 2 x10%7 | 1974-75
DCI ete 1.8 94.6 | 2 x 1030 | 1977-84
PETRA | ete™ 23.4 | 2304 |2.4 x 10| 1978-86
CESR ete” 6 768 [1.3 x 1032 |1979-2008
PEP ete~ 15 2200 | 6 x 10*' | 1980-90
SppS P 455 | 6911 | 6 x 103 | 1981-90
TRISTAN | ete™ 32 3018 | 4 x 103! | 1987-95
Tevatron | pp 980 | 6283 4.3 x 10? |1987-2011
SLC ete” 50 2920 |2.5 x 103°| 1989-98
LEP ete™ | 104.6 [26659| 1032  |1989-2000
HERA ep | 304920 | 6336 |7.5 x 103! |1992-2007
PEP-II | ete™ | 3.149 | 2200 |1.2 x 10%*|1999-2008
KEKB | ete™ | 3.5+8.0| 3016 |2.1 x 10%*|1999-2010
VEPP-4M | eTe™ 6 366 | 2 x 10°* 1979-
BEPC-1/II| ete™ 2.3 238 122 1989-
DA®DNE | ete™ 0.51 98 |4.5 x 10%2| 1997-
RHIC p,i 255 | 3834 (2.5 x 10%2| 2000-
LHC p,i 6500 |26659(2.1 x 10%*|  2000-
VEPP2000| ete™ 1.0 24 | 4 x 103! 2010-
S-KEKB | efTe™ 7+4 | 3016 |8 x 10%° *| 2018-
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Colliders: Energy
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Rings vs Linacs

Accelerating cavity

‘) '(«(" Bending magnet

b

Focusing \'\
magnet

Collider Arcs

Transport from Linac

Existing Linac
Positron Booster /

Positron Target — |

A

~us B SLC — the only linear

Pulse Compressors (2)

Damping Rings (2)
‘\\*_ Existing Linac

_~— Electron Booster
Electron Gun
4 — 80 Ja4ASD
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Highest Energy = Highest Field SC Magnets

8.3T
EHE,
4.5T 5.3T 3.5T 2 1, D4 e
1276 dipoles
HERA, RHIC,
9m, 75 mm 9 m, 80 mm

416 dipoles 264 dipoles

Tevatron,

6 m, 76 mm
774 dipoles

4.5 K He, NbTi NbTi cable NbTi cable NbTi cable
+warm iron cold iron simple & 2K He
small He-plant Al collar cheap two bores

2& Fermilab

12 USPAS'22 | Colliders vs1-2
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Some Basic Concepts of
Accelerator Physics
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Betatron Oscillations, Tune

Particle trajectory

e / * As particles go around a ring, they
Ideal will undergo a number of betatron

orbit oscillations v (sometimes Q) given
" by
1 ¢ ds
v=—-y4
27 ° B(s)

 This Is referred to as the
Htunel!

 We can generally think of the tune in two parts:

Integer: - 64.31.  Eraction:
magnet/aperture Beam

optimization Stability
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Emittance &3
B As a particle returns to the same v V1

point on subsequent revolutions, 1t ® J) P

will map out an ellipse in phase p”
space .
3

B Emittance = 6x0o
B Normalized emittance:
en = €Y} - adiabatic invariant

AN
=
=

— Area=¢

B Luminosity ~ 1/¢
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Collider Spot Size

low-beta

quadru-
pole

to decrease the beam size
at the collision point we
can reduce either p* or ¢

beam
envelo

s~f*

¢ Fermilab
B (" must remain larger than o, (‘hourglass effect’)

¢ with exception of crab-waist (e+e- colliders)
B Quadrupole aperture must be respected
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Beam-beam Effects

B The beam-beam tune shift is similar to the space charge tune shift

but 1s engaged 1n the IPs only. The tune shift per IP:

oV r Z*N. ? Jo ) ’
w |_ T, 2, 1+ f )54 9l o, = \/ o Eay t ( D, o, )2
5VBBy 47TA,B Y (Gx T g, ) ,By/O'y

For round beam low-beta

to decrease the beam size /
/

2 2 quadru-/ '\ A :
r/Z°N. / \ at the collision point we
p ! 1+ IB pole | \ can reduce either f* or ¢

W " 8nafy o i
¢ Magnetic field of counter rotating ’|
beam almost doubles force, 1+ (O 0e | o R
¢ Note that for large synchrotron |
amplitude the tune shift increase ‘
due to larger beta-function with
longitudinal displacement is
compensated by decrease of space charge field

=>no dependance on bunch length
B Smaller £ yields larger B-function and beam size in quads

p(s)=f +5°1
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Collider Betatron Tunes

Stochastic cooling requires betatron tunes close to half-integer to avoid the
Schottky band overlap
Odd resonances are suppressed in the absence of parasitic collisions
Tunes ~[x.42, x.46] are chosen for NICA (same as Recycler)

¢ Inversion of Tevatron tunes (~0.582 -> 0.418)
Tevatron suffers from 7-th order (parasitic collisions) and 12-th order (will be
suppressed by cooling in IEI‘LICA)

0.5

FNAL :
04
11

SuaS

§ RS

g/ ity

i

0.5 0.4 0.5

3 4 5 6 7 8 6 7 8 9101112
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Possible Values of Tune Shifts

B Achieved values of tune shifts

¢ Space charge

e NAPM ~0.15 (strong el. cooling, 200000 turns)

e Fermilab Booster ~0.3 (only ~2000 turns at low energy)

e JPARK, PS Booster ~ 0.5-0.6 (high accuracy of super-periodicity)
¢ Beam-beam

e VEPP-2 ~0.2 (round beams) AlUpR B 5 ”:,I | | |
e Typical e'e” ~0.05 (fast SR damping) Avgr 0151 [;=535 m E
e Typical hadron beams (Tevatron, LHC) o~=60 cm
~0.01-0.015 per IP 01f =
e Low energy RHIC ~0.1 (bad life time)
B Ratio of tune shifts: OVip T O, 2 e |
=Np |77 (1 + [ )
B For the present NICA Ve 2 05 '1 ';.J '3 '4
parameters, the beam-beam tune shifts are much E [Gevial

smaller than the space charge ones and, in the first
approximation, can be neglected

B Note that for the same tune shift the beam-beam effect is more destructive than the
space charge due to kick concentration near IPs

B For NICA we choose total Av = Avsc +2Aveg ~0.05
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Intrabeam Scattering

B Intrabeam scattering is determined by two major mechanisms
¢ Temperature exchange between degrees of freedom

e Landau collision integral describes the temperature exchange:
4 ' 5. —uu.

g:_Zﬂ'Q 21’ch %) J‘ f af’ _f, af u ij 3ulu] dSV’

Ot m- OV, ov' ov .

j u

u=v-v', jfd3V=1

¢ Additional heating related to non-zero dispersion

e Scattering with particle momentum change results in additional
betatron oscillations due to instant change of reference orbit

2 2 2
Ae=p _meme 5, LAC_D [Ap}
P 2 6. 2B\ p
B Relatively simple equations in the smooth lattice approximation

¢ Below transition there 1s an equilibrium state where no emittance growth

¢ Particle mass changes “its sign” above the transition. That yields
unlimited emittance growth (energy is taken from the beam energy)
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Luminosity Lifetime

B Sources of particle loss
¢ Scattering at the residual gas
e Rutherford scattering
e Nuclear scattering
e Capture of residual gas electrons (fully stripped heavy ions,E<] GeV)
e Multiple small-angle scattering leading to d&/dt in cooling absence
Without cooling more powerful mechanism than single scattering

¢ Nuclear and Rutherford scattering in the IPs
¢ Noise in RF system (phase and amplitude)
¢ Electron capture in the electron cooler

¢ Non-linear resonances due to space charge and beam-beam

effects

e Very powerful mechanism typically observed at the store beginning
in the absence of cooling
e Electron cooling rate grows fast with decrease of amplitude. That can
lead to overcooling and particle loss increase with time
o Observed in Fermilab Recycler
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Luminosity Evolution

L=y, ”ﬁzg H(o, ! f*)

N
Arf3

N (DN, (1)
e(l)

B Therefore, in the absence of cooling the lifetime
4 Ay

B Factors change in time: L(#)=C H (1)

1 =k

_ = =
TL _ _ TNl 1) TNZ TS T TH
L(t)dt

FBCT Intensity and Beam Energy Updated: 20:38:28 Instantaneous Luminosity Updated: 20:38:28

2.5E14 7000 18000 -
-
e 2 16000 -
2614 £ 14000
3000 = || 5 12000-
2 1.5€14 1 L4000 & [ & 10000
s = — 8000
= 1R141 (3000 2 M % 6000
=
2000 ‘E 4000
S5E13 i 3 2000
1000 L -
I I ] I I ] | I
Skt I : 23:00 02:00 05:00 0800 11:00 14:00 17:00 20:00
T T T T T T T T
23:00 02:00 05:00 08:00 11:00 14:00 17:00 20:00 — ATIAS — AUCE — CMS — LHCb
LHC luminosity plot

Colliders, Valeri Lebedev, Acc. Phys. School of JINR, June 19-23, 2023 Page | 18



Present Hadron Colliders

<
LINAC NSRL ¥ =

= ENEBIS-Uagr i
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2 s B

RHIC (BNL, Brookhaven) LHC (CERN)

B RHIC 1s NICA’s main competitor
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Colliders That Will Be

Main Parameters of The NICA Collider :

503,04

Circumference, m

| Bunch number per ring 22
Mean-square bunch size, m 0.6

)| Min. beta-function (f*), m 0.6
lon energy, GeV/u 1.0 3.0 4.5

Ion number per bunch, 1e9 | 0.275 2.4 2.2
Peak luminosity, cm?.s! 0.9e25 | 0.9e27 | 6.3e27

1.5 GeV e+

—O

SlO m 100 m
]

Novosibirsk Super Charm Tau Factory

’ e+ DR — positron damping ring
DW //='~ . DW —_darr] ping wiggler

- SS — Siberian Snake
‘ CV — electron-positron converter

Pol e-/e- - polarized/un-polarized electron
source
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Cooling at Collision Energy

B The planned luminosities of hadron colliders cannot be achieved
without beam cooling at collisions (LHC has SR damping)

B Present cooling technologies are good enough to support NICA

B However, there 1s a great challenge to cool dense high energy

bunches at the collision energy in ep-collider planned by BNL

¢ BNL demonstrated stochastic cooling of heavy fully stripped 1ons at
~150 GeV/a at RHIC

¢ However, due to much larger number of protons per bunch in ep-collider,
the cooling rate for proton beam are way too small to be useful
B We need cooling method capable to cool dense ultra relativistic

bunches

¢ Present electron cooling technology does not allow cooling above 10
GeV

¢ Present technology of stochastic cooling based on microwaves (<10
GHz) has cooling rates 2-3 orders of magnitude below required

B Possible was to address the problem: stochastic cooling at optical
frequency & electron cooling not based on electrostatic acceleration
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Stochastic Cooling

B [nvented in 1969 by Simon van der Meer
B Naive cooling model
¢ 90 deg. between pickup and kicker
50 =—-g6

Averaging over betatron oscillations yields

56° = —%Zgﬁ = —g?

B Adding noise of other particles yields
592 = _ggz + Nsampleg2 02 = _(g — Nsampleg2 )92

B That yields
1 1

Y] Yl /i
59 :_Egopte 2 gopt = 2N b Nsample ~ NWO

sample

B [n accurate analytical theory the cooling
process 1s described by Fokker-Planck equation .
¢ The theory 1s built on the same principle as plasma theory — which

1s a perturbation theory (large number of particles in the Debye

sphere versus large number of particles in the sample
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Electron cooling
B [nvented in 1966 by A. M. Budker

¢ In the beam frame - heavy particles come into
equilibrium with electron gas

B Tested experimentally in BINP, Novosibirsk, in
1974-79 at NAP-M

¢ 35 MeV electron beam (65 MeV per nucleon)
¢ Magnetized electron cooling

B Many installations since then, up to 300
kV electron beam (GSI, Darmstadt)

B FNAL 4.3 MeV cooler was the next step
in technology

B 2 MeV cooler for COSY built by BINP
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Electron Cooling at FNAL (1)

B Fermilab made next step in the electron cooling technology
B Main Parameters

4.34 MeV pelletron

Up to 0.5 A DC electron beam with radius of about 4 mm
Magnetic field in the cooling section - 100 G

Interaction length — 20 m (out of 3319 m of Recycler
__circumference)

® & & o

~ ELECTRON
ACCELERATOR

&
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Stochastic Cooling at Optical Frequencies
B Coherent electron cooling (Derbenev, ~1980)
¢ FEL based (Derbenev, Litvinenko, ~2006)
¢ Techniques suggested to increase the relative bandwidth
e Microbunch instability based (D. Ratner)
e Plasma cascade instability (Litvinenko)
B Optical stochastic cooling (OSC) (~2005)
¢ Suggested by Zolotorev, Zholents and Mikhailichenko
¢ OSC 1s the only cooling method tested experimentally which
1s capable to cool a proton bunched beam at collisions for
energies above ~300 GeV
B Electron cooling (20 — 100 MeV)
¢ Based on an energy recovery linac
¢ Based on an electron beam rotated in a ring
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Optical Stochastic Cooling

B2 QD B3

B1

Q1Q2 B4 Q3q4

Y

1
Pickup ® Kicker
wiggler Optical wiggler
amplifier

B The test was carried out with 100 MeV electrons in a passive
regime. OSC increased the SR radiation cooling rates for all
degrees of freedom by almost an order of magnitude

B Test of OSC 1n active regime (with OA) 1s planned to happen
within few years
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Major Questions in Nuclear Physics

B How do quarks and
gluons give rise to
the properties of
strongly interacting
particles?

B How does the
structure of nuclel
emerge from nuclear
forces?

B What physics lies
beyond the Standard
Model?

B What are the phases
of strongly
interacting matter, and what roles do they play in the cosmos?

B Spin structure of the proton/deuteron (g-factor)
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Why NICA?

B NICA is built to answer the last 2 questions
B Unique niche
¢ Two major competitors (LHC & RHIC) have too large energy
to get to the ultimate luminosity in the interesting region of
low energy of few GeV/n
B From accelerator physics point of view NICA has complete set of
problems/technologies present in modern hadron colliders
¢ Ultrahigh vacuum
¢ Superconducting magnets

¢ Large beam current results in beam instabilities
= Feedback systems for suppression of instabilities
¢ Low-beta optics brings dynamic aperture limitations
e (Careful design of machine optics, optical measurements and
correction
¢ Electron and stochastic cooling at collisions

¢ Instrumentation and controls required for modern colliders

¢ ...
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NICA Layout

SPD
§ (Detector)
BM; @N (Detector) ﬂ %
[ Exh-:lded beam '

Heavy lon

B [nitial operation: i—Bi collisions
B The second stage (5-10 years later): collisions of polarized
protons/deuterons (spin structure)
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Scheme of the collider ring

RF21  RF31 RF11 S

[4] [ (11) M 9 PU-X
6666 75 @00 b ”“1 2] [
- (-9 o -LH I [HH= THILY
SPD
8]
| RF32 RF12 MPD
. P I U .
3 #{ OB - O D (T == =L
21
RF Ring 2 Beam Y K-L ECool
Dump?2 }'22]}([2] [6]

Au(+79) ion mode 2]

Two rings: one above another
Collision energy in the 1on mode: 2:(1.5+4.5) GeV/n
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Collider Electron Cooler

ERERERREOLRRERAENLE
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Detector MPD

CPC
Tracker

TPC \Cryostat
IT
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Colliders : Most Important Topics/Effects

B Engineering of magnets, RF, Power supplies, vacuum, particle
sources, targets, diagnostics, collimators, etc
B Beam physics (incomplete list)
¢ One particle: beam optics, long-term stability, resonances, losses,
noises, diffusion/emittance growth, etc
¢ One beam: nstabilities, synchrotron radiation, beam-induced
radiation deposition, intrabeam scattering, cooling, space-charge
effects and compensation
¢ Two-beams: beam-beam effects and compensation, beamstrahlung,
machine-detector interface, etc
¢ Beam cooling (electron, 1onization, stochastic)

Colliders, Valeri Lebedev, Acc. Phys. School of JINR, June 19-23, 2023 Page | 33



