Fixed target mode for the MPD

V. Riabov

Fixed target configuration

• With a target located at z = -150 cm

Item	Dimension
Length of the TPC	340 cm
Outer radius of vessel	140 cm
Inner radius of vessel	27 cm
Outer radius of the drift volume	133 cm
Inner radius of the drift volume	34 cm
Length of the drift volume	163 cm (of each half)

• Kinematics

Ebeam	$\sqrt{s_{NN}}$ collider mode	√ <i>s_{NN}</i> FXT mode	ηсм	CMS coverage
2.0	4	2.4	0.7	-0.7; 0.9 (2.2)
5.5	11	3.5	1.23	-1.23; 0.37 (1.67)

Detector coverage depends on track cuts

Simulation

- Request 25 configuration with UrQMD event generator, Bi+Bi with b = 0-16 fm
- UrQMD is run in FXT mode at two energies: $E_{lab} = 2.0 \cdot A \text{ GeV}$ and $E_{lab} = 5.5 \cdot A \text{ GeV}$
- Full detector configuration, but no FFD (stays in the way)
- Event vertex was fixed at x = 0 cm, y = 0 cm, z = -149 cm
 - ✓ current reconstruction code does not reconstruct tracks and event vertices produced at |z| > 150 cm
 → not a big limitation for the estimations provided
 - \checkmark task for the future z-vertex coordinate should be fixed at target position, no reconstruction needed
- \checkmark 30,000 events for each energy for charged hadrons
- ✓ 300,000 for PIDed particles

Detector coverage for charged tracks

• Events with reconstructed vertex, primary tracks (produced at a distance < 1 cm from the primary vertex)

- Detector acceptance strongly depends on 'number of TPC hits' track selections
- Symmetric midrapidity coverage (|y| < 0.5) can be reached with track selections N_{hits} > 10-30

TPC phase space for $\pi/K/p$, $E_{lab} = 2 \cdot A \text{ GeV}$

• Phase space depends on track selection cuts, results are presented for $\pi/K/p$ was $N_{hits} > 10$ and > 30

- Limited acceptance at low p_T for heavier hadrons
- Softer N_{hits} selections improve acceptance in expense of worse momentum resolution and matching to PV

TPC+TOF phase space for $\pi/K/p$, $E_{lab} = 2 \cdot A \text{ GeV}$

• Phase space depends on track selection cuts, results are presented for $\pi/K/p$ was $N_{hits} > 10$ and > 30

• Smaller effect of a softer N_{hits} cut since only 'full length' tracks with many TPC hits reach the TOF

Efficiency for $\pi/K/p$, $E_{lab} = 2 \cdot A \text{ GeV}$

• $N_{hits} > 10$; DCA < 2 cm; Primary particles ($R_{production} < 1$ cm)

Efficiency for $K_s^0/\Lambda/\Xi^-$, $E_{lab} = 2 \cdot A \text{ GeV}$

• $N_{hits} > 10$; $p_T > 0.1$ GeV/c; Primary particles ($R_{production} < 1$ cm)

Efficiency for $K^*(892)^0/\phi(1020)/\Sigma(1385)^{\pm}$, $E_{lab} = 2 \cdot A \text{ GeV}$

• $N_{hits} > 10$; $p_T > 0.1$ GeV/c; Primary particles ($R_{production} < 1$ cm)

TPC phase space for $\pi/K/p$, $E_{lab} = 5.5 \cdot A \text{ GeV}$

• Phase space depends on track selection cuts, results are presented for $\pi/K/p$ was $N_{hits} > 10$ and > 30

- Limited acceptance at low p_T for heavier hadrons, situation is worse at higher energy
- Softer N_{hits} selections improve acceptance in expense of worse momentum resolution and matching to PV

TPC+TOF phase space for $\pi/K/p$, $E_{lab} = 5.5 \cdot A \text{ GeV}$

• Phase space depends on track selection cuts, results are presented for $\pi/K/p$ was $N_{hits} > 10$ and > 30

• Smaller effect of a softer N_{hits} cut since only 'full length' tracks with many TPC hits reach the TOF

Efficiency for $\pi/K/p$, $E_{lab} = 5.5 \cdot A \text{ GeV}$

 $N_{hits} > 10$; DCA < 2 cm; Primary particles ($R_{production} < 1$ cm) ٠

 π^{\pm} , TPC & TOF

1.5

0.5

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

2

y_{CMS}

1.5

Efficiency for $K_s^0/\Lambda/\Xi^-$, $E_{lab} = 5.5 \cdot A \text{ GeV}$

 $N_{hits} > 10$; $p_T > 0.1$ GeV/c; Primary particles ($R_{production} < 1$ cm) ٠

 $K_{S}^{0} \rightarrow \pi^{+}\pi^{-}$, TPC & TOF 0.9 0.8

 $\Lambda \rightarrow p\pi^{-}$, TPC & TOF

 $\Xi^{-} \rightarrow \Lambda \pi^{-}$, TPC & TOF

Efficiency for $K^*(892)^0/\phi(1020)/\Sigma(1385)^{\pm}$, $E_{lab} = 5.5 \cdot A \text{ GeV}$

• $N_{hits} > 10$; $p_T > 0.1$ GeV/c; Primary particles ($R_{production} < 1$ cm)

Fixed target configuration - II

• With a target located at z = -115 cm

Table 2.1: The basic parameters of the TPC				
Item	Dimension			
Length of the TPC	340 cm			
Outer radius of vessel	140 cm			
Inner radius of vessel	27 cm			
Outer radius of the drift volume	133 cm			
Inner radius of the drift volume	34 cm			
Length of the drift volume	163 cm (of each half)			

• Kinematics

Ebeam	$\sqrt{s_{NN}}$ collider mode	√ <i>S_{NN}</i> FXT mode	ηсм	CMS coverage
2.0	4	2.4	0.7	-0.8; 0.8 (2.1)
5.5	11	3.5	1.23	-1.33; 0.27 (1.57)

TPC phase space for $\pi/K/p$, $E_{lab} = 2 \cdot A \text{ GeV}$ $z_{vertex} = -150 \text{ cm vs. } z_{vertex} = -115 \text{ cm}$

• $N_{hits} > 10$; DCA < 2 cm; Primary particles ($R_{production} < 1$ cm)

- Results at $z_{vertex} = -115$ and -150 cm are similar
- Acceptance shifts by ~ 0.1 unit of rapidity towards negative values \rightarrow consistent with slide 12

TPC phase space for $\pi/K/p$, $E_{lab} = 5.5 \cdot A \text{ GeV}$ $z_{vertex} = -150 \text{ cm vs. } z_{vertex} = -115 \text{ cm}$

• $N_{hits} > 10$; DCA < 2 cm; Primary particles ($R_{production} < 1$ cm)

- Results at $z_{vertex} = -115$ and -150 cm are similar
- Acceptance shifts by ~ 0.1 unit of rapidity towards negative values \rightarrow consistent with slide 12

Conclusions

- MPD acceptance is good enough to work in the fixed-target mode (midrapidity acceptance is preserved)
- Two possible options for the vertex location were considered:
 - ✓ option $z_{vertex} = -150$ cm provides better acceptance
 - option $z_{vertex} = -115$ cm does not require rebuild of the detector at somewhat worse performance
- Next: trigger performance of the FFD/FHCAL/TOF ???

BACKUP

• MPD collider mode, <u>BiBi@9.2</u>, https://www.mdpi.com/2571-712X/6/2/27/pdf?version=1681888396

Figure 7. Transverse momentum p_T vs. rapidity *y* phase space of reconstructed true hyperons: (a) Λ , (b) Ξ^- , (c) Ω^- .

Tracking efficiency (without TOF-matching)

Limited midrapidity coverage even before identification!

Tracking efficiency (matched to TOF-400 or TOF-700)

Even worse for TOF-matched tracks

PairKK wagon

