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Objectives

Design of linear optics is a very important step in the design of an
accelerator
It determines all major parameters and properties
In majority of cases the optics design does not require accounting of
coupling between different degrees of freedom

¢ And coupling can be considered in the perturbation theory
However, in the recent years, machines, where different degrees of
freedom are strongly coupled, were considered

¢ Examples: Electron and Ionization cooling (including both linear

and the ring-based machines), Optical stochastic cooling

In this lecture we consider basics of linear optics for the coupled and
uncoupled optics

¢ We shortly refresh uncoupled optics

¢ Then, having some experience, we consider x-y coupled optics
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Uncoupled
Betatron Motion
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Equations for Uncoupled Motion

B Linearized equation of motion
)C”+(Kx2 +k)x:0

where: K.(s)=K, =eB (s)/Pc, k(s)=k=eG(s)/ Pc

B In Hamiltonian form

[ dx _OH
ds dp
3 ] pz b x2
dp  OoH with H=L—+(K’+k)=
- =T 2 2
L ds dx

B General solution of 2-nd order linear equation
x(s)=C(s)x(0)+S(s)0(0), O(s)=dx/ds

where C(s) and S(s) two linear independent solutions

We can rewrite it in matrix form

x(s) | | M (s) M, (s) || x(0)
b(s)HMmm Mm(s)MmOJ or | X(5) = M(5)x(9)
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Conservation of the Phase Space Volume

Jacobian does not depend on time

O [+ 9P g
d(amq))_d op, "' ds
ds\ O d.
s\0pooa0)) ds\| o ( dp

Ox, ds

where we used

= The phase space volume is conserved in the course of motion

and, consequently, M|=1

B The conservation of the phase space volume is also justified for

multidimensional motion.

0 dx
—| x, +—ds
op, ds
9 X, + @ds
Ox, ds

(dx OH

) ds dp
dp _ OH

L ds dx

It is called Liouville theorem
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Betatron Motion in a Ring

B Arbitrary turn-by-turn betatron motion at a given place may be
presented through eigen-vectors

X, = Re(Aln (A1V1)+A2n (szz)) where Mv, =A,v,, k=12

¢ Stable betatron motion requires Af=1 =5 A=A (since real M)

¢ Introduce betatron frequencies so that A1z = e

Corresponding betatron tune (fractional part): O=u/2x
B Description of betatron motion for the entire ring

¢ The eigen-vector V(s)=M(0,5)V is the eigen-vector for the total ring
transfer matrix for coordinate s.

¢ Then we normalize the eigen-vectors so that
v(s) =M(0, s)v(0)e *
and require Im(v,.(s)) =0 and v (s)Sv(s)=-2i , where §
Then we can describe the entire ring betatron motion

x(s) = J21 Re( ei(l//—ﬂ(s))v)

where the action I and the betatron phase w determine initial part. pos.

Il
1
-
(U
L |

-1 0
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The Eigen-vector Parameterization

B Parametrize the eigen-vector

o

=v(s)=| i+a(s)

- JBG) |

¢ we define that Im(v,(s))=0

¢ The elgen -vectors are orthogonal and corr'ec‘rly normalized

VB (s

viSv=0 or viSv,=0
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Courant-Snider Invariant
The betatron amplitude (maximum particle displacement) =21/

. 21 ) Aa
The maximum angle = ?(1+a ) Ny X S
The maximum angle for x=0 is achieved when b 275
JB(s) B
J2I Re i+a(s) e™? | =21 Re l1—ia(s) s I o®
— ,:j _f,_._).
VO(S) | | VB(s) J/NIE
21 )
= Local angular spread: 6 = |— #
B Finding action from the known x and 4 o
iy .
v'S {x =21 (e V; CCH ”Z;fg;z:ty >V Sx=—i\2] > [ = % V+SX|2
: : 0 1
B Courant-Snyder invariant Remember that: S :{ Lo
1+’ -
21 =|v'Sx| = 6 +2ax0 + ——x’
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Computation
of Machine Optics
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Software for Computation of machine optics

B There are many computer codes allowing one to compute beam optics
B T mention 3 of them
1. MAD -> MAD-8 -> MADX - supported by CERN
https://mad.web.cern.ch/mad/

2. Elegant - supported by ANL
https://www.aps.anl.gov/Accelerator-Operations-Physics/Software#telegant

3. OptiMX - supported by Fermilab
https://home.fnal.gov/~ostiguy/OptiM/ (temporary link because of Fermilab security:

https://www.dropbox.com/s/56l4nctnwegf7w7/0OptimX64-20210526-setup.exe?d|=0 )

B In this course we will be using OptiM
¢ Interactive, GUI driven, easy to learn
¢ Operates on major computer platforms: Windows, Unix, MAC
¢ Free installation, Easy to install
¢ Online help (documentation)
B Tnput file consists of:
¢ Math header
¢ Main body starting from keyword OptiM. It includes: (1) beam parameters,
(2) element sequence, (3) parameters of elements, (4) service blocks
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4% OptiMXx (LINE) - O *
File Edit Search Fitting Tools View View4D SpaceCharge Window Preferences  Help

FEBRXuaFEEFsyYyreaoODiiEREIREESEE G

LATTICE EDITOR: iota_OSC_v3.6.2.0v12.0pt L= | & &5 || £ Uncoupled Lattice Functions [=][= =]
73 5qqd3r=8.235758; => ®.235758 A 16 __: .......... R s e Yo o T 2o o E AT Toi it st o
74 $qqddr=-0.19047; => -0.19047 :
75 $qqelr=0.136764; =>» ©8.136764
76 $qqxdr=-1.8815; =3 -1.8815
77 %qgx3r=1.1925; => 1.1925
78 # Coupling skew-quad
79 $sqb2r=08; => ] {5
80 $sqall= 0.802; => 0.002 #0.010846 = =
81 # 05C straight sextupoles = 3
B2 $ssx21 =11/18; => 1.1 # L=19 cm ‘g 0
83 $ssx2r =11/10; => 1.1 # L=19 cm 2 E
B4 §ssx1r =-6/6; =3 -1 # L=6 cm 5 g
- f e S LSS £ = =
B6 $EmitX=8.5696e-08; => B8.5696e-008 i.i =
B7 $5igmaP=9.86383e-85; =>9.86383e-005 ~
B8 $AcceptX=108.5e-4; =3 B.88185 — 0
B9 $AcceptY=6.6e-4; => 0.00066 L
98 $DeltaPaccept=2.32e-2; =2 8.8232 -
G H----- - e 0.2
92 $Bshort="h_str s30 gm3@ bm30u iSL bm3@d gm3@ s30 h_str"; r
93 $Blong="h_str s60 gmo@ bm6Ou iSL bmedd gm6@ s60 h_str"; — 0.4
O ff-— - - |
95 £Dp_p=-0 0 5 10 15 20 25 30 35
e CEIEEEIIEE
97 OptiM ’
98 Energy[MeV]=%E-%Me Mas[MeV]=FMe . . e [ et e
99 Emittance: ex[cm]=%AcceptX ey[cm]=$AcceptY DP/P=%DeltaPaccept C Phases (Uncoupled Lattice Functronf]_“ = “EI 2]
190 #Emittance: ex[cm]=%EmitX ey[cm]=$EmitX DP/P=%5igmaP 0.6 3 :
161 Initial: BetaX[cm]=25.0002 Beta¥[cm]=199.985
182 AlfaX=-7.68374e-10 Alfa¥=-6.61191e-18
183 DispersX[cm]=26.9962 DispersY[cm]=0
104 Dsp_PrimeX=1.63293e-11 DspPrimeY=0
105 X-a. ¥=0. 7-0. =0.4 ]
186 tetak=8. teta¥Y=8. o,
187 o
188 begin lattice. Number of periods=1 =
189 # middle of 0SC straight y
118 olLStart ggxlhl h_05Cmagn olXilL oDiL olXZL h_05Cmagn gbxm bbx1l gbxi =
111 h_05Cmagn ssx21 h_05Cmagn olLX6L gbx2Edgel bbx21 gbx olLX7L h_0S5Cmagn e
112 #Undulator
113 cowh®l h_und
114 gglndI1il bbwEnd1il ggUnd01il oowl2l ggUndI2il bbwEnd2il ggUnd02il
115 gINbwpl bbwpl gOUTbwpl oowl gINbwml bbwml gOUTbwml oowl gINbwpl
116 gINbwuml bbwml gOUTbwml oowl gINbwpl bbupl gOUTbwpl oowl gINbwml
117 gINbupl bbwpl gOUTbwpl oowl gINbuml bbwml gOUTbwml oowl gINbuwpl
118 gINbwml bbwml gOUTbuml oowl gINbwpl bbupl gOUTbwpl oowl gINbwml “
< >

Computations can be done in a ring and beam line modes
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X-Y Coupled
Betatron Motion
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Equations for X-Y Coupled Motion

B Linearized equations of motion

x"+(Kx2 +k)x+(N—%R'jy—Ry'=0

y”+(Ky2 —k)y+(N+%R’jx+Rx’:O

where: K, (s)=K, , =eB, (s)/Pc k(s)=k=eG(s)/Pc, N=eG /Pc R=eB, /Pc
B In Hamiltonian

2 2 2 2 2 2
p, tp R” | x R |y R
H="—2 4+ K +k+— |—+| K> —k+— |—+ Nxy+— ~X

4

_o_ R

<px Sy

the corresponding canonical momenta are: by By

y

N\ 2
x| [ x| 1 0 0 0]
.| P 0, 0 1 -R/2 0

. c—R X = , X= , R=

In matrix form: X = RX y y 0 0 1 0
P, | 10, | (R[22 0 0 1
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Matrix Form of Equations for X-Y Coupled Motion

H=%f(TH§( where

Then the motion equations are

9X _ Uk
ds

Kj+k+RT 0 N —R/2
0 1 R/2 0
H=
R2
N R/2 1<y2—k+T 0
| —RJ2 0 0 1
(0 1 0 0
-1 0 0 O
U=
0 0 0 1
0 0 -1 0

B Properties of matrix U (called unit symplectic matrix)
U'U=1I and UU =1, where 1 is the identity matrix
B Similar to the single dimensional motion we introduce 4-dimensional

transfer matrix, X= 1\A/I(O,S)fio, for the 2-dimensional motion

The cap here and below denotes that we consider the transfer matrix

which uses canonical momenta instead of angles
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Motion Symplecticity dx

— = UHKX
B |agrange invariant ds
AT A
ds ds ds

o i':r['i: = const
B Motion symplecticity
Substituting X =M%, into above equation one obtains
%, UX, =%, M(0,s)” UM(0,s)X, = const
As the above equation is satisfied for any X, and %, it yields
M'UM=U

This property is called symplecticity and matrix M symplectic
B M(0,5)"UM(0,5) is antisymmetric
= Only six ((n*-n)/2 = 6) of these equations are independent (4 diagonal ones

are identities). Thus, out of 16 matrix elements of matrix M the motion
symplecticity leaves only 10 elements linearly independent
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Symplecticity of Eigen-Vectors
MV, =A%, k=1,.4
B For any two eigen-vectors the symplecticity yields the identity
0=2,9,U(MV,~47,)=(M¥,) UM, -2 ¥, UL, =(1-2,4,)7,"U¥,

~a\! ‘A A TAAT TINAL A TyTa
where we substituted: (MVJ) UMy, =v;, M"UMy, =v,; Uy,

It determines that the eigen-values of stable motion always appear in two
reciprocal pairs, and, consequently, the four eigen-values split into two
complex conjugate pairs: 11, 41 and A2, 22"

For A1#42 (non-degenerate case) we obtain the orthogonality condition

v, 'Uv, 20,

v, UV, 20, Normalizing ViUV ==20 9, 70v,=-2i
VUV, =0  ifi=j, eigen-vectors V/U¥ =0 . ¥ Uv,=0 ,
vUv, =0, we obtain: v, Uv,=0 , 9,'U%,=0

Out of 2 complex conjugated vectors we choose one which satisfies the

normalization condition. Normalization of CC vector has different sign.
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Parameterization of Eigen-vectors

B Betatron motion is described similar to 1D case:
f((s) == Re( 2]1{,1(S)e—i(l//1+m(s))+ /2]2‘A,2(S)e—i(y/2+yz(s)))

B There are 2 popular parameterizations: Edwards-Teng and Mais-Ripken
¢ Here we shortly consider the extended Mais-Ripken

ﬂlx

i(l — u)+ o,

VB
E@ivl

u+a,

Py,

v,

JB. "
X
lu + 052x "

+C¥2y

P,

B The betatron motion is described by 10 linearly independent functions:
4 B-functions, 4 a-functions, and 2 betatron phase advances

B Symplecticity allows one o compute functions u, v1 & v» from known a's & B's.
However, there are 4 solutions for their values and additional information is
required to choose a's and f's.
In practice, first, we find the eigen-vectors from known transfer matrix,
and, then unique solutions for all 4D-Twiss functions
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4D EIIlpsmd in the Phase Space

R =Re(A4e ™V, +4e™¥,)=4 (

B Rewrite it in matrix form

X = VAE,| where ‘A’{A
B To obtain a 4D ellipsoid which

!

"

N

! "
Vis7V 5V, 7V, :| A=

V, cosy, +V, siny,

/ "

+ A4, (V2 cosy, +Vv, sy,

"

A

(4 0 0 O] [ cosy,
0 4 0 0 —siny,
0 0 4, 0 S = cosy,
0 0 0 4, _siny, |

includes all particles we need to
account that the mode amplitudes are interdependent. To account it

=

COS Y/, COS I/,
— siny/, cos i,
we put: cosy, siny,
—siny, siny; |

so that vector & stays at 3D surface with unit radius, i. e. €.8)=1

¢ Substituting x in this equation we obtain: X ((VA) j (Va)’

N

x=1

¢ Matrix symplecticity yields V' =U"V'U ysing this equation we

finally obtain:

AT—

X

=x=1,

r_ A—IA—l

[xl>

==UVE'V'U’,
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1D and 2D Emittances

B We define the beam emittance as a product of the ellipsoid semi-
axes (omitting the factor 7°/2 correcting for the real 4D volume of
the ellipsoid): I I

/g, 0 0 0 |
. 0 1/¢g 0 0
B Consequently: —g, , B =
quently “i62 = fan 0 0 1/s 0
0 0 1/e,
: C : . | R
B Gaussian distribution: f(X)— exp( —XT:.Xj
dr’e e, 2

B Second order moments
5 1 1.2
g = XX, = FX)dx = X% exp| ——x'Ex [
j %5 () 4rie e, I / p( 2 )d
To carry out the integration we use a transform §=V'X. I't reduces
matrix to the diagonal form. => £=V&"'V' =&"
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General Remarks

B ¢ and & are the motion invariants - they are conserved

B In practical applications the longitudinal magnetic field at boundaries
of elements is zero. Consequently, the difference between variables
with and without caps disappears.

Lectures 1&2, “Linear Optics”, V. Lebedev Page | 20



OptiMX 4D Calculations

B 4D Twiss parameters for Tevatron near BO (CDF detector)

£ 4D Lattice Functions
1,400 —

[m]

Beta X&Y

- ...... '—h *Hhhhhﬂhhhhhﬁz_sn

= o

|l mm”lwm”l M.m”l Ml

&5 Phases (4D)

i = Iy

055

=
s
|

Phase/{2*pi)
(]
|

0.6 _Emhhhh‘ Ph.hh ................

‘_.. I b F ........ 1 *h;hhih*h‘-_ :

=)
0.6

(1d,z)/=seyd

[mo1|[maz] [m mees] [ etz
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Perturbations of Uncoupled
Betatron Motion
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Perturbed Betatron Motion in Uncoupled Case

B To simplify equations, we transit to new variables
X

X dx _[1ldx X dp|_ X

NIRRT, ﬂ(@ s 2p" dsj ﬁgm\/ﬁ

B Tn the new variables the motion description is greatly simplified.
Accounting that du/ds=1/p we obtain

de——X M_{cos,u siny}

X =

du’ —sinu  cos u
Consequently, the unperturbed solution is characterized by p=1a=1
B Choose perturbed initial particle coordinates as R
fO“OWing: X0=\/ER6 _i+d o
= Dependence of beam size on p is R

A(S)=\/ERG \/Ecos,u—iJrAO?sin,uJe’”’] = 8£\/Ecosy—6isinyj +[Wj
[Fewn-tgganaer| e (2

A(S):\/5£C2ﬁ+S2[l+ﬁ&2j_2dCSj:\/5(1+CO;(2111),3+1CO;(zﬂ)[l-tBAdzj_dsin(zlu)J
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Perturbed Betatron Motion (2)
B The beam size oscillates at the double betatron frequency é \

A(S)Z\/gqﬁ+14;22}-[,3—1+ﬁd2jcos(2y)—20?sin(2y)J | )
.

Consequently, the perturbed beta-function oscillates at the double
betatron frequency as well. Here s=1+48/8.
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What is missed in the Lecture?

Not all calculations are shown in detail

Edwards-Teng parameterization

How to find eigen-vectors from matrices X an E and vice versa
How to express a transfer matrix from known Twiss parameters or
eigen vectors and betatron phase advances

B These details are not required to follow other lectures

B ook for details in:
¢ V. A. Lebedev (Fermilab), S. A. Bogacz (Jefferson Lab), “Betatron motion
with coupling of horizontal and vertical degrees of freedom”,
https://arxiv.org/abs/1207.5526
¢ or “Accelerator Physics at the Tevatron Collider”, edited by V. Lebedev and
V. Shiltsev, Springer, 2014.
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Problems

1.

oo kW

For uncoupled betatron motion prove that the normalization of eigen-vectors,
V'SV, =-2i,yields that du/ds=1/p_ (For the proof use top Eq. of page 7)

Prove that if v is the eigen-vector for matrix M corresponding to the one turn
matrix starting at s=0 (point 1) then the vector Mz v will be the eigen vector of
the transfer matrix corresponding to the point 2. Here M1 is the transfer matrix
from point 1 to point 2.

Find 2D analog of Courant-Snyder invariant

! "

Prove that matrix V =[91 VLV, Y, } is symplectic

——1

Fill missed calculations in computation =VE'V' =&
Prove that for a symplectic matrix, defined by the following equation M'UM=U ,
M|=1, M"' =U'M'U and the matrix also satisfies to

its determinant is
MUM’ =U
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7. Assuming that the motion after exit from KRION ion source is uncoupled and
described uncoupled Twiss-parameters find equations describing the horizontal
and vertical rms sizes in the downstream beam transport for two below cases.

(1) Ions exit at the axis of magnetic field. Beam parameters at the ion source
center: magnetic field - By, ion rms beam size - o, transverse temperature - T.

(2) Now add that the ions exit solenoid with offset ro directed at angle € from the
horizontal plane.
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