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Objectives  
 Design of linear optics is a very important step in the design of an 

accelerator  
 It determines all major parameters and properties  
 In majority of cases the optics design does not require accounting of 

coupling between different degrees of freedom 
 And coupling can be considered in the perturbation theory 

 However, in the recent years, machines, where different degrees of 
freedom are strongly coupled, were considered  
 Examples: Electron and Ionization cooling (including both linear 

and the ring-based machines), Optical stochastic cooling 
 In this lecture we consider basics of linear optics for the coupled and 

uncoupled optics 
 We shortly refresh uncoupled optics 
 Then, having some experience, we consider x-y coupled optics  
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Uncoupled 
Betatron Motion 
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Equations for Uncoupled Motion 
 Linearized equation of motion 

 2 0xx K k x     
where:  ( ) ( ) /x x yK s K eB s Pc  ,   ( ) ( ) /k s k eG s Pc   

 In Hamiltonian form 
dx H

ds dp

dp H

ds dx

 


  
   with  

 General solution of 2-nd order linear equation  
( ) ( ) (0) ( ) (0) , ( ) /x s C s x S s s dx ds     

where C(s) and S(s) two linear independent solutions  

We can rewrite it in matrix form 

11 12

21 22

( ) ( )( ) (0)

( ) ( )( ) (0)

M s M sx s x

M s M ss 
    

     
      or  ( ) ( ) (0)s sx M x  

 
2 2

2

2 2x

p x
H K k  
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Conservation of the Phase Space Volume 
Jacobian does not depend on time 

2 2

0 0 2
0 0

2 2
0 0

0 0 2
0 0

1
( , )

0
( , )

1

dp dx H H
p ds x ds ds ds

p ds p ds s p pd p q d d

ds p q ds dsdp dx H H
p ds x ds ds ds

x ds x ds x x p

                                                                   
 

where we used  

dx H

ds dp

dp H

ds dx

 


  
 

 The phase space volume is conserved in the course of motion 
and, consequently, 1M  

 The conservation of the phase space volume is also justified for 
multidimensional motion. 
It is called Liouville theorem  
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Betatron Motion in a Ring 
 Arbitrary turn-by-turn betatron motion at a given place may be 

presented through eigen-vectors 
    1 1 1 2 2 2Re n n

n A A   x v v  where , 1, 2k k k k  Mv v  

 Stable betatron motion requires 1k   => *
2 1   (since real M) 

 Introduce betatron frequencies so that 1,2
ie    

Corresponding betatron tune (fractional part): / 2Q    
 Description of betatron motion for the entire ring 

 The eigen-vector ( ) (0, )s sv M v  is the eigen-vector for the total ring 
transfer matrix for coordinate s.  

 Then we normalize the eigen-vectors so that  
( )( ) (0, ) (0) ss s e v M v   

and require 1`Im(v ( )) 0s   and ( ) ( ) 2s s i  v Sv ,  where 
Then we can describe the entire ring betatron motion  

 ( ( ))( ) 2 Re i ss I e  x v  
where the action I and the betatron phase  determine initial part. pos.  

0 1

1 0

 
   

S
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The Eigen-vector Parameterization  
 Parametrize the eigen-vector  

1 1
*

2 2

( )
v

( ) ,( )
v

( )

s

s i s

s





 
               

v v
v v

v v  

 we define that 1Im(v ( )) 0s    
 The eigen-vectors are orthogonal and correctly normalized  

2 1

( )
0 1( )

( ) 2( )
1 0( )

( )

0 or 0T

s
i s

s ii s
s

s


 








  
                    

  

v Sv

v Sv v Sv
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Courant-Snider Invariant  
The betatron amplitude (maximum particle displacement) 2I  

The maximum angle  

The maximum angle for x=0 is achieved when  

/2

( )

1 ( )2 Re 2 Re( )
( )( )

i

is

i sI e Ii s
ss







     
                      

  

 Local angular spread:  

 Finding action from the known x and   
21

2 2
2 2

i
orthogonality
condition

e CC
I i I I


    

       
  

v
v S x v Sx v Sx  

 Courant-Snyder invariant                           Remember that: 
2

2 2 21
2 2I x x

  


 
   v Sx  

 22
1

I 


 

2
m

I




0 1

1 0

 
   

S
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Computation  
of Machine Optics 
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Software for Computation of machine optics 
 There are many computer codes allowing one to compute beam optics 
 I mention 3 of them 

1. MAD -> MAD-8 -> MADX  - supported by CERN 
https://mad.web.cern.ch/mad/  

2. Elegant - supported by ANL 
https://www.aps.anl.gov/Accelerator-Operations-Physics/Software#elegant  

3. OptiMX - supported by Fermilab  
https://home.fnal.gov/~ostiguy/OptiM/ (temporary link because of Fermilab security: 

https://www.dropbox.com/s/56l4nctnwegf7w7/OptimX64-20210526-setup.exe?dl=0 ) 
 In this course we will be using OptiM  

 Interactive, GUI driven, easy to learn 
 Operates on major computer platforms: Windows, Unix, MAC 
 Free installation, Easy to install 
 Online help (documentation)  

 Input file consists of:  
 Math header 
 Main body starting from keyword OptiM. It includes: (1) beam parameters,  

(2) element sequence, (3) parameters of elements, (4) service blocks 
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Computations can be done in a ring and beam line modes   
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X-Y Coupled 
Betatron Motion 
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Equations for X-Y Coupled Motion 
 Linearized equations of motion 

 

 

2

2

1
0

2

1
0

2

x

y

x K k x N R y Ry

y K k y N R x Rx

            


            
 

where:  , , ,( ) ( ) /x y x y y xK s K eB s Pc  , ( ) ( ) /k s k eG s Pc  , PceGN s / , PceBR s /  
 In Hamiltonian  

 
2 2 2 2 2 2

2 2

2 4 2 4 2 2
x y

x y x y

p p R x R y R
H K k K k Nxy yp xp

    
            

      

the corresponding canonical momenta are:   
2

2

x

y

R
p x y

R
p y x

  

  


 

In matrix form: Rxx ˆ       

































































1002

0100

0210

0001

,,ˆ

R

R

y

x

p

y

p

x

y

x

y

x Rxx





 



Lectures 1&2, “Linear Optics”, V. Lebedev     Page | 14 

Matrix Form of Equations for X-Y Coupled Motion 

                                     where  

 
 
Then the motion equations are 

xUH
x

ˆ
ˆ


ds

d
 

 Properties of matrix U (called unit symplectic matrix) 
  IUU T  and IUU  , where I is the identity matrix 

 Similar to the single dimensional motion we introduce 4-dimensional 
transfer matrix, 0ˆ),0(ˆˆ xMx s , for the 2-dimensional motion 
The cap here and below denotes that we consider the transfer matrix 
which uses canonical momenta instead of angles  

xHx ˆˆ
2

1 TH 

2
2

2
2

0 2
4

0 1 2 0

2 0
4

2 0 0 1

x

y

R
K k N R

R

R
N R K k

R

 
   

 
   
  
 
  

H

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 
  
 
  

U
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Motion Symplecticity  
 Lagrange invariant 

  1 2
1 2 2 1 1 2 1 2

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0

T
T T T T T Td dd

ds ds ds
    

x x
x Ux Ux x U x H U Ux x UUHx  

  
 Motion symplecticity  

Substituting 0
ˆˆ ˆx Mx  into above equation one obtains 

constˆ),0(ˆ),0(ˆˆˆˆ 2121  xMUMxxUx ss TTT
 

As the above equation is satisfied for any 1x̂  and 2x̂  it yields  
ˆ ˆT M UM U  

This property is called symplecticity and matrix M̂  symplectic 
 ),0(ˆ),0(ˆ ss T MUM  is antisymmetric  
 Only six ((n2-n)/2 = 6) of these equations are independent (4 diagonal ones 

are identities). Thus, out of 16 matrix elements of matrix M the motion 
symplecticity leaves only 10 elements linearly independent    

xUH
x

ˆ
ˆ


ds

d
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Symplecticity of Eigen-Vectors  
ˆ ˆ ˆ , 1,..,4k k k k Mv v  

 For any two eigen-vectors the symplecticity yields the identity 

     ˆ ˆ0 1ˆ T T
i i i i j j i i j i j i

T
T

j j j          U Mv v UMv v U v vv UM vv
       

 

                  where we substituted:    ˆˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆT T T
i i i i i

T

j  UMv v M UMv v Uv vM  
It determines that the eigen-values of stable motion always appear in two 
reciprocal pairs, and, consequently, the four eigen-values split into two 
complex conjugate pairs: 1,1

* and 2,2
* 

For 12 (non-degenerate case) we obtain the orthogonality condition 

,0ˆˆ

,   if0ˆˆ

,0ˆˆ

,0ˆˆ

22

11















j
T
i

ji ji

vUv

vUv

vUv

vUv

   

1 1

1 1

2 1

ˆ ˆ 2 ,

ˆ ˆ 0 ,

ˆ ˆ 0 ,

T

T

i  





v Uv

v Uv

v Uv .0ˆˆ

,0ˆˆ

,2ˆˆ

12

22

22











vUv

vUv

vUv
T

i

 

Out of 2 complex conjugated vectors we choose one which satisfies the 
normalization condition. Normalization of CC vector has different sign.  

Normalizing 
eigen-vectors 
we obtain: 
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Parameterization of Eigen-vectors  
 Betatron motion is described similar to 1D case: 

 1 1 2 2( ( )) ( ( ))
1 1 2 2ˆ ˆ ˆ( ) Re 2 ( ) 2 ( )i s i ss I s e I s e       x v v  

 There are 2 popular parameterizations: Edwards-Teng and Mais-Ripken 
 Here we shortly consider the extended Mais-Ripken  

 



































1

1

1

1

1

1

1

1

1

ˆ














i

y

y

i
y

x

x

x

e
iu

e

ui

1v

              


































y

y

y

i

x

x

i
x

ui

e
iu

e

2

2

2

2

2

2

2

1

ˆ

2

2













v

 

 The betatron motion is described by 10 linearly independent functions:  
4 -functions, 4 -functions, and 2 betatron phase advances 

 Symplecticity allows one to compute functions u, 1 & 2 from known ’s & ’s. 
However, there are 4 solutions for their values and additional information is 
required to choose ’s and ’s.  
In practice, first, we find the eigen-vectors from known transfer matrix, 
and, then unique solutions for all 4D-Twiss functions  
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4D Ellipsoid in the Phase Space  
     1 2

1 1 2 2 1 1 1 1 1 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆRe cos sin cos sini iAe A e A A               x v v v v v v  
 Rewrite it in matrix form 

AAξVx ˆˆ   where 



  2211 ˆ,ˆ,ˆ,ˆˆ vvvvV   

 To obtain a 4D ellipsoid which 
includes all particles we need to 
account that the mode amplitudes are interdependent. To account it 

we put: 























32

32

31

31

sinsin

sincos

cossin

coscos






ξ
 

so that vector   stays at 3D surface with unit radius, i. e.   1, ξξ  

 Substituting x in this equation we obtain:     1ˆˆˆˆ
11






 

xAVAVx
T

T  

 Matrix symplecticity yields 1ˆ ˆT T V U V U  using this equation we 
finally obtain: 1 1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ 1 , ,T T T     x Ξx Ξ UVΞ V U Ξ A A  





















2

2

1

1

000

000

000

000

A

A

A

A

A
























2

2

1

1

sin

cos

sin

cos






Aξ
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1D and 2D Emittances 
 We define the beam emittance as a product of the ellipsoid semi-

axes (omitting the factor 2/2 correcting for the real 4D volume of 
the ellipsoid): 
 

 
 Consequently:  

 

 Gaussian distribution: 
 

 Second order moments 
4

21
2

4 ˆˆˆˆ
2

1
expˆˆ

4

1
ˆ)ˆ(ˆˆˆˆˆ xdxxxdfxxxxΣ T

jijijiij  





 xΞxx

   

To carry out the integration we use a transform xVy ˆˆˆ 1 . It reduces 
matrix to the diagonal form. => 1 1ˆ ˆ ˆ ˆ ˆT  Σ VΞ V Ξ   

)ˆdet(

1

ˆˆˆˆ

1

44332211

4

Ξ



D

1

1

2

1 2
2

4

1/ 0 0 0

0 1/ 0 0ˆ,
0 0 1/ 0

0 0 0 1/

D 









 
 
  
 
 







Ξ

2
1 2

1 1 ˆˆ ˆ ˆ( ) exp
4 2

Tf
  

   
 

x x Ξx
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General Remarks  
 1 and 2 are the motion invariants – they are conserved 
 In practical applications the longitudinal magnetic field at boundaries 

of elements is zero. Consequently, the difference between variables 
with and without caps disappears.  
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OptiMX 4D Calculations   
 4D Twiss parameters for Tevatron near B0 (CDF detector) 

 

 



Lectures 1&2, “Linear Optics”, V. Lebedev     Page | 22 

 
 

Perturbations of Uncoupled 
Betatron Motion 
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Perturbed Betatron Motion in Uncoupled Case  
 To simplify equations, we transit to new variables  

3/2

1
,

2

X d X dX X d X
x p

ds ds ds

   
   

 
       

 
 

 In the new variables the motion description is greatly simplified. 
Accounting that  / 1/d ds  we obtain 

2

2

cos sin
,

sin cos

d X
X

d

 
 

 
     

M  

Consequently, the unperturbed solution is characterized by 1, 1    
 Choose perturbed initial particle coordinates as 

following:  
 

 Dependence of beam size on  is  
2 2

max

ˆ ˆ sinˆ ˆ( ) Re cos sin cos sin
ˆ ˆ ˆ

ii
A s e



         
  

                                    
 

     
2 2

2 2 1 cos 2 1 cos 2ˆ ˆ1 1ˆ ˆˆ ˆ( ) 2 sin 2
ˆ ˆ2 2

A s c s cs
        

 

        
                    

 

0

ˆ

Re ˆ

ˆ

iei 


 



  
  

         

X
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Perturbed Betatron Motion (2) 
 The beam size oscillates at the double betatron frequency 

   
2 2ˆ ˆ1 1ˆ ˆ ˆ( ) cos 2 2 sin 2

ˆ ˆ2
A s

      
 

     
               

Consequently, the perturbed beta-function oscillates at the double 
betatron frequency as well. Here ˆ 1 /     .  



Lectures 1&2, “Linear Optics”, V. Lebedev     Page | 25 

What is missed in the Lecture? 
 Not all calculations are shown in detail 
 Edwards-Teng parameterization  
 How to find eigen-vectors from matrices  an  and vice versa 
 How to express a transfer matrix from known Twiss parameters or 

eigen vectors and betatron phase advances  
 

 These details are not required to follow other lectures   
 
 
 Look for details in:  

 V. A. Lebedev (Fermilab), S. A. Bogacz (Jefferson Lab), “Betatron motion 
with coupling of horizontal and vertical degrees of freedom”, 
https://arxiv.org/abs/1207.5526  

 or “Accelerator Physics at the Tevatron Collider”, edited by V. Lebedev and 
V. Shiltsev, Springer, 2014. 
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Problems 
1. For uncoupled betatron motion prove that the normalization of eigen-vectors, 

ˆ ˆ 2k k i  v Sv , yields that  / 1 /d ds  . (For the proof use top Eq. of page 7) 
2. Prove that if v is the eigen-vector for matrix M corresponding to the one turn 

matrix starting at s=0 (point 1) then the vector M12 v will be the eigen vector of 
the transfer matrix corresponding to the point 2. Here M12 is the transfer matrix 
from point 1 to point 2.  

3. Find 2D analog of Courant-Snyder invariant  

4. Prove that matrix 



  2211 ˆ,ˆ,ˆ,ˆˆ vvvvV  is symplectic  

5. Fill missed calculations in computation 1 1ˆ ˆ ˆ ˆ ˆT  Σ VΞ V Ξ  
6. Prove that for a symplectic matrix, defined by the following equation ˆ ˆT M UM U , 

its determinant is ˆ 1M , 1ˆ ˆT T M U M U and the matrix also satisfies to 
ˆ ˆ T MUM U .  
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7. Assuming that the motion after exit from KRION ion source is uncoupled and 
described uncoupled Twiss-parameters find equations describing the horizontal 
and vertical rms sizes in the downstream beam transport for two below cases.  
(1) Ions exit at the axis of magnetic field. Beam parameters at the ion source 
center: magnetic field - B0, ion rms beam size - , transverse temperature - T.  
(2) Now add that the ions exit solenoid with offset r0 directed at angle  from the 
horizontal plane.  


