Прогресс 2020 – 2023 гг. в разработке аэрогелевых черенковских счетчиков в Новосибирске

А. Ю. Барняков и др.

<u>План:</u>

- Счетчики АШИФ
 - Эксперимент КЕДР и СНД
 - Долговременная стабильность счетчиков АШИФ
 - АШИФ с КФЭУ, модернизация счетчика АШИФ для эксперимента СНД
- Детекторы черенковских колец с фокусировкой
 - Счетчики с линзой Френеля (mRICH for EIC project)
 - ФАРИЧ для Супер С-Тау фабрики
- Позиционно-чувствительные фотодетекторы
 - Матрицы КФЭУ
 - ФЭУ с МКП

Progress 2020 – 2023 in aerogel Cherenkov counters development in Novosibirsk

A. Yu. Barnyakov & other.

Contents:

- ASHIPH counters
 - The KEDR and the SND experiments
 - Long-term stability of the ASHIPH counters
 - ASHIP with SiPM, upgrade of the ASHIPH system for the SND experiment
- RICH detectors with focusing of the light
 - RICH with Fresnel lens (mRICH for EIC project)
 - FARICH for the Super Charm-Tau Factory
- Position-sensitive photon detectors
 - SiPM arrays
 - MCP-PMTs

ASHIPH technique is 30 years old!!!

ASHIPH detectors

Aerogel SHIfter and PHotomultiplier

PMMA light guide doped with BBQ dye is used as wavelength shifter

Suggested at BINP. A.Onuchin et.al. NIM A315(1992)517

SCF2021, Novosibirsk

VEPP-4M

- Symmetric e⁺e⁻⁻ collider
- E_{c.m.} = 2–10 GeV
- $L = (1 \div 80) \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$
- Precise energy calibration: RD: (5÷15)x10⁻⁶ CBS: 3x10⁻⁵

Physics program

- Precise particle mass measurements: J/ψ , $\psi(2S)$, $\psi(3770)$, τ lepton, D mesons, Y mesons
- Measurements of ψ and Y mesons lepton width
- R measurement in 2-10 GeV c.m. energy range
- $\gamma\gamma \rightarrow hadrons$ and other 2γ processes
- Branching fractions measurements in charm and bottom quark systems (above 10⁻⁴)

KEDR ASHIPH system

- 160 counters in 2 layers
- Solid angle 96% of 4π
- n=1.05, V_{Σ} =1000 l, high transparency SAN-96 aerogel
- π/K separation in the momentum range 0.6÷1.5 GeV/*c*
- 160 MCP PMTs, photocathode diameter ø18mm, able to work in the magnetic field up to 2 T
- Fully installed in the detector in 2013. Now is in operation.

KEDR ASHIPH system (2)

- Npe = 6.4±0.2 layer 1
- Npe = 5.0±0.2 layer 2
- Npe = 10.9±0.2 sum of the signals in 2 layers (80%)
- π/K -separation at 1.2GeV/*c* is 4.3 σ

SND at VEPP-2000

ASHIPH counters for SND

SND ASHIP<u>H</u>: π/K separation

Long-term stability of ASHIPH counters

ATC 223

ATC 205

Amplitude decrease reasons for the ASHIPH system which is in operation at the KEDR detector since 2014

ASHIPH with SiPM

$\underline{\mathsf{MCP}\;\mathsf{PMT}\to\mathsf{SiPM}}$

Pros:

	MCP PMT	SiPM
PDE=QE*CE	25*0.6≈15%	30-45%
Magnetic field imm.	Axial	Any direction
Power supply	2÷4 kV	<100V

Cons:

- High level of noise \rightarrow New specific FEE \rightarrow Cooling system
- Radiation tolerance is still low.

It is possible to upgrade KEDR and SND ASHIPH systems right now. For Super Cτ (B)- Factories SiPM radiation tolerance study is needed.

ASHIPH option for Super C-Tau factory

 π/K – separation up to 3.5 GeV/c μ/π – separation from 0.5 to 0.9 GeV/c

Upgrade of ASHIPH system for the SND

Z Pee

n=1.13

- Change of MCP-PMT to SiPM lead to increase of • amplitude by two or more times:
- ASHIPH system with n=1.05: 4.5 pe \rightarrow 8÷10 pe
- -ASHIPH system with n=1.13: 9.5 pe \rightarrow 18÷20 pe
- π/K -separation become more reliable

RICH with Fresnel lens

EIC project

Key EIC Characteristics (parameters)- High particle collision rate $L = 10^{34} cm^{-2} s^{-1} \left(\int L dt = 100 f b^{-1} / y ear \right)$ - Large center-of-mass energy range $E_{CM} = 20 \div 140 \ GeV$ - electrons 2. $5 \div 18 \ GeV$ - protons $40 \div 275 \ GeV$ (ions: $Z/A \times E_p$)- Polarized beams of electrons and ions ($up \ to \ 70\%$)- Large range of ion species ($p \rightarrow U$)- At least one large-acceptance detector- Projected budget: $\approx $2.4 \ billion$ - Start date: ≈ 2031

EIC detector proposals

- backward
 proximity-focus RICH
- **central** high-performance DIRC <mark>AC-LGAD TOF</mark>
- forward dual-radiator RICH

- backward
 AC-LGAD TOF
- central high-performance DIRC
- forward dual-radiator RICH

- backward modular RICH AC-LGAD TOF
- central high-performance DIRC AC-LGAD TOF forward
- dual-radiator RICH <mark>AC-LGAD TOF</mark>

[®] Almost approved

S

S.

Ы

Ŭ

N

20.

of

egin

Ō

COD

ECCE-PID & mRICH system concepts

ECCE = EIC Comprehensive Chromodynamics Experiment

- Physics requirements
 - pion, kaon and proton ID
 - over a wide range $|\eta| \le 3.5$
 - with better than 3σ separation
 - significant pion/electron suppression

Momentum-rapidity coverage

- forward: up to 50 GeV/c
- central: up to 6 GeV/c
- backward: up to 10 GeV/c

Demands different technologies

Cherenkov detectors:

- dRICH = dual RICH (aerogel + gas)
- hpDIRC = high-performance DIRC (synthetic fused silica)
- mRICH = modular RICH (aerogel + Fresnel lens)

68 modular counters oriented to IP:

- aerogel n=1.03 100x100x40 mm³
- acrylic Fresnel lens with focal distance 6"
- position sensitive photon detector HRRPD (MCP-PMT) or SiPM arrays

Aerogel RICH with Fresnel lens

Such approach allows us to improve Cherenkov angle resolution and optimize photo detectors area!

The thick aerogel for mRICH

There are two way to increase the aerogel thickness:

- Arrange the stack of several aerogel samples with moderate thickness like as 20 mm
- Produce the larger (thicker) aerogel samples as for LHCb (n=1.03; 200x200x50 mm³)

According to Marco Contalbrigo, so far the only manufacturer that achieved thickness larger than 2cm is in Russian.

• In both cases there is no reason to make the aerogel thickness more than $(1 \div 2) \cdot L_{sc}$:

$$N_{out} = N_0 \frac{L_{sc}}{h} \left(1 - e^{-\frac{h}{L_{sc}}} \right), \qquad L_{sc} \sim \lambda^4$$

- In case of approach "stack" the additional Cherenkov photons loss is occured due to reflectance and scattering on the additional surfaces
- There are two not cuttied surfaces in aerogel
 - "Optical surface@ which contacts only with air during the production
 - "Bottom" it contacts with metallic frame during the production processes
- Several configuration of the aerogel Cherenkov radiators were tested with relativistic electron beams at BINP beam test facilities in 2022.

Beam tests schem of aerogel RICH in 2022 at BINP

- Three short runs (2 shifts: 12+12 hours) with electrons E=2.5 GeV was done in May, November and December 2022.
- Four MaPMTs H12700 (Hamamatsu) with pixel 6x6 mm were placed in such way to register 85% (for May run) and 60% (for Nov and Dec run) of Cherenkov photons per track.
- Three GEMs with spatial resolution $\sigma_{X,Y} \leq 100 \ \mu m$ were used at beamline.
 - ✓ Two before aerogel sample and one behind
- Two approaches to create a thick aerogel Cherenkov radiators (single thick tile or stack of two tiles) were compared with help of beam tests and G4 simulation

BINP beam test facility

Example disposition of equipment in experimental hall (15/03/2018)

4 MaPMT H12700

Scheme&Results of beam test (May 2022)

Влияние эффектов поверхности в стопке (457f3+457f4)

Влияние эффектов поверхности в стопке (457f3+457f4)(2)

Due to scattering effects on the bottom aerogel surfaces the N_{pe} loss is about 3–4% for single layer samples and about 6% for stack of two samples. While the resoultion degradation becomes sensable (13%) only in case of stack of two aerogel samples.

TBeam simulation with G4: input data.

- To perform quntitively comparison TBeam results with G4 simulation it is necessary to implement in simulation very correct data on aerogel parameters (n, L_{sc}, thick) and also about photon detector parameters such like Geometry and ٠ PDE.
- As a QE(λ) we will use data for MaPMT H12700 from manufacturier (Hamamatsu) data-sheet (DS) normalized on our own direct measurement QE(λ =409nm) performed with laser light sourse(see the pictures below: left).
- Also it is necessary to take into account that flat-pannel MaPMTs have non 100% photoelectron collection efficiency (CE). According to invetigations (Ref. *arXiv:1506.04302v2 [physics.ins-det] 5 Oct 2015*) about 20% of photoelectrons are able to give by 5 times smaller amplitude than a single photoelectron peak due to skip of the first dynode stage (see the pictures below: right). It means that if the read out electronics discriminator threshold is set ~0.1-0.2pe we ٠ will lose about 20% of photoelectrons.
- •

Tbeam and G4sim comparison (single – thin 457-3)

Scheme&Results of beam test (Dec 2022)

• The new aerogel samples were produced in 2022 to be tested in mRICH prototype with mixed hadron beams in 2023-2024.

Refractive index of all tiles $n = 1.028 \pm 0.001$;

 $L_{sc}(400nm)$ for all blocks \geq 43mm;

7 aerogel tiles 30 mm 100x100 mm

- 4 aerogel tiles 40 mm 100x100 mm
- 1 aerogel tile 50 mm 80x80 mm;
- The general idea of the experiment was to investigate the quality of new aerogels and estimate the impact from aerogel itself to overal mRICH prototype resolution.
- PD and beamline configurations were the same as in Novembe 2022. It allow us to perform direct comparison of results from these two beam test campaigns (Nov and Dec 2022).

Aerogel with 30 mm thickness (460f4)

Aerogel with 40 mm thickness (460f11)

Aerogel with 50 mm thickness (460f15)

Dependence of N_{pe} and σ_R on aerogel thickness

- N_{pe} dependes on the aerogel thickness as expected and limitted by the Releigh light scattering law.
- Some ssytematical increase of N_{pe} (~13÷15%) are observed in new thick aerogels after increase of backing temperature (470°C -> 600°C). This effect could not be quantatively explained by increase of refractive indexes (1.027 -> 1.029) and it is contra to N_{pe} decrease (~5÷6%) expected due to Releigh light scattering decrease (L_{sc}(400nm, 1.027) ≈ 47mm → L_{sc}(400nm, 1.029) ≈ 41mm)
- $\sigma_R \sim \sqrt{thickness}$ (as expected), while for several aerogel samples some deviations σ_R from the dependence are observed. The reason of this effect could be in some impurites inside the aerogel which are able to give additional small angle forward scattering.

Cherenkov angle single photon resolution (SPR)

FARICH – Focusing Aerogel RICH

FARICH option for SCTF

The capability of μ/π -separation at the level of $\geq 3\sigma$ for P=1 GeV/c was shown at CERN beam test in 2012

A.Yu. Barnyakov, et al., NIM A 732 (2013) 352

- Proximity focusing RICH
- 4-layer focusing aerogel
 - n_{max} = 1.05 (1.07?), total thickness 35 mm
 - $S_{aer} = 15 m^2$
- 21 m² total area of photon detectors
 - SiPMs barrel part (16 m²)
 - MCP-PMT endcap parts (4 m²)
- ~10⁶ pixels 3x3 mm² with pitch 4 mm

The largest 4-layers focusing aerogel samples

Beam test results

Cherenkov angle Single PhotoElectron (SPE) resolution

Position-sensitive photon detectors

FEE based on FPGA-TDC

Amplifier board 27×27 mm² size

- 14-layer PCB
- 30x gain, 64 channels
- couples to KETEK 8×8 SiPM array

Simulated single photon pulse shapes from amplifier for different input resistance. ~ 22mV amplitude can be achieved.

• Each module readouts 6 arrays 8x8 pixels and equipped with optical transceiver.

2 2m 3 € €4 h

անավաղնակակակակակ

• Thickness of 5-layer design is less than 5 cm.

DC-DC convertor board

- goes behind the backplane
- 51×84 mm² size
- provides power to SiPMs, amplifiers, FPGA
- uses air inductive coils to operate in the detector magnetic field
- power, trigger & clock connectors

The first tests of FaRICH-Auslese-System

FPGA-TDC (FaRICH-Auslese-System) to readout 2304 SiPMs developed and produced in GSI.

The tests performed bu Mechael Traxler, Matthias Hoek and Merlin Böhm at HIM-Institute in Mainz.

- Everything works as expected: ToT(Time) is as expected for single photon distribution.
- Single photon detection time resolution without any corrections and proper TDC calibration is about 380ps (it is good enough value for FARICH), while intrinsic resolution of TDC is about 8÷12 ps.
- A lot of dark counts are in the data (every 3rd hit is noise). Thermostabilization or cooling is needed for future tests.

Позиционно-чувствительные ФЭУ с МКП

HRPPD (Income) 10x10 см; пиксел 2.5x2.5 мм Цена: ~20k\$

Hamamtsu R10754-016-M16(N)

4х4 пикселя; 5х5 мм Цена: 900 тыс. Йен

Planacon XP85112 8x8 пикселей; 6x6 мм Цена: 15k\$

Round vs Square MCP-PMT for the RICH

Round vs Square MCP-PMT for the RICH (2)

To evaluate expected performance we can use recent FARICH beam test data:

- $N_{pe}^{H12700} \approx 16$
- $CE^{H12700} \approx 0.8$ photoelectron collection efficiency ($CE^{MCP} \approx 0.6$)
- $GE^{TB} \approx 0.8$ Geometrical Efficiency of Test Beam setup (GE^{exp} is determined by fill factor of photon detectors for the experimental setup)

$$\mu/\pi @ 1 \text{ GeV/c:} \qquad \frac{\theta_C^{\mu} - \theta_C^{\pi}}{\sigma_{tr}^{\theta}} = \frac{292 - 278}{2.5} = 5.6\sigma$$

$$\pi/K @ 6 \text{ GeV/c:} \qquad \frac{\theta_C^{\pi} - \theta_C^{K}}{\sigma_{tr}^{\theta}} = \frac{309 - 299}{2.5} = 3.9\sigma$$

Addendum

HRPPD

Hihg Rate Picosecond Photon Detector

HRPPD – High Rate Picosecond Photodetector

- 10 cm x 10 cm MCP-PMT
 - Chevron pair of ALD-functionalized MCPs (10 μm)
 - Glass/Ceramic package
 - Capacitive (CC) or Direct (DC) Coupling
 - 100 cm² active area (only spacers on edges)
- High Gain (~10⁷)
- Bialkali Antimonide Photocathode
 - Sodium-Potassium-Antimony Na₂KSb
 - >30% QE at 365 nm
 - >95% spatial uniformity
- Timing Resolution
 - SPE: ~23 ps (Vagnoni, INFN for 10 um pores)
- Position Resolution
 - < 0.6 (mm) (dependent on readout board)
 - DC version has 1024 2.5 x 2.5 mm pixels

Available today!

LAPPD Workshop – October 26, 2022

Г	

Parameter	LAPPD / HRPPD		
Gain	1.00E+07		
SPE Timing Resolution	<50 ps		
MPE Timing Resolution	8 ps		
Pixel Size	Any / 2.5 mm X 1024		
Spatial Resolution	<1 mm		
Room temp Dark Noise	≤2 kHz/cm²		
Radiation hardness	>1E15 15 MeV protons		
Single-Photon readout	Yes		
Magnetic Field Tolerance	1.4 T demonstrated		
@ Degrees from Normal	TBD		
PC QE @365 nm	30%		
PC QE @450 nm	>20%		
PDE @450 nm	TBD (≥20% = 70% OAR X 30% QE)		
Demonstrated Tile Life	TBD (> 5 C/cm ²)		

Aerogel degradation due to water adsorption(1)

- Aerogel internal surface is 10⁶ times greater than external. Adsorption of water is very fast process (1-10 hours).
- Degradation of the light absorption length is very slow process (1-2 months) after water absorption.
- The time and the level of the degradation are depend on the impurities in aerogel from raw materials and production procedure (Fe, Mn, Cr, etc.).

Concentration of metals in aerogel, ppb							
Fe	Cu	Mn	Cr	Ni			
500	56	7	26				

Aerogel degradation due to water adsorption(2)

- The refractive index (n-1) and light scattering length depends on amount of adsorbed water and are changed less than 10% after water adsorption of 2-4% of aerogel mass.
- The light absorption length (L_{abs}) in different aerogel samples after baking is the same, but after water impregnation could be very different
- It is possible to make aerogel selection after water impregnation
- One atom Fe is able to attract 6 molecules of water
- To achieve maximum degradation of L_{abs} it is enough to adsorb 1ppm of water.

(NIM A598 (2009) 166-168)

WL, nm