Straw Tracker R&D – ongoing activities and further steps

K. Kuznetsova (PNPI)

for the Straw Tracker Team

V.Bautin, A.Chukanov, T.Enik, A.Lapkin, K.Salamatin, O.Samojlov (JINR) Y.Kambar, A.Mukhamejanova (JINR and INP Almaty) S.Bulanova, E.Mosolova, V.Maleev, D.Sosnov, A.Zelenov (PNPI)

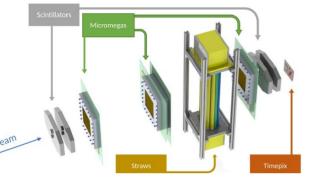

- ongoing and starting activities
- Mechanics and geometry (not covered here) ongoing
- Prototyping ongoing
- <u>Lab and testbeam measurements ongoing</u>
 - + establishing approaches for:
 - Prototype quality control initiated
 - Electrical connections initiated
 - Defining parameters of the readout electronics ongoing
- Garfield/LTSpice simulation studies well developed
 - Validation with lab/testbeam measurements with the known electronics
 - Prediction of the readout performance for various readout options
 - Prediction for various operation conditions (field, particle momentum, angle)
- Defining requirements and conceptual design of the readout electronics ongoing
 - Stage2 fast, optional charge measurements
 - Stage1 ~10 times lower max occupancy, good charge measurements
- <u>Realistic simulation of the tracker response in SPDroot ongoing</u>
 - Realistic parametrization based on Garfield/LTSpice started
 - Implementing realistic noise, finite TDC/ADC, finite dynamic range scheduled
 - Pattern recognition also with realistic noise needed...

Oct 24, 2023

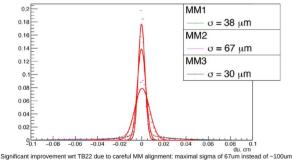
material test and prototyping

Component and assembly tests

- Foil tests, wire test
- Crimping: anode pins, crimpers
- Straw end-plugs
- Adhesives and sealing

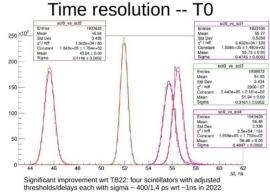

First prototypes:

- General R&D straws of different metallization and diameter 5, 10 and 20 mm => 110 straws
- ZUV (~110 straws) ongoing



<mark>setup-23</mark>

Reference tracking -- residuals



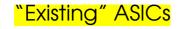
Reference tracking:

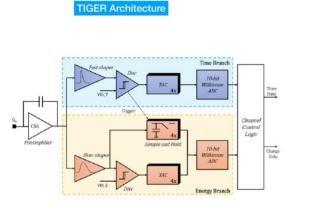
- MM detectors (250 um) + Tiger readout (Torino University)
- Timepix4 50um x 50um

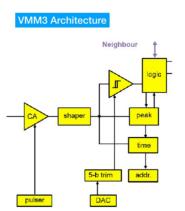
Under the test: a combined straw tracker prototype with the Tiger and mu2e (VMM3) readouts

Good data taking with MM+straw and success in integrating the $\ensuremath{\mathsf{Timepix4}}$

Reference tracking (MM only): **better than 70 um** work on adding the timepix layer in the analysis is ongoing Reference time (T0): **better than ~300 ps**

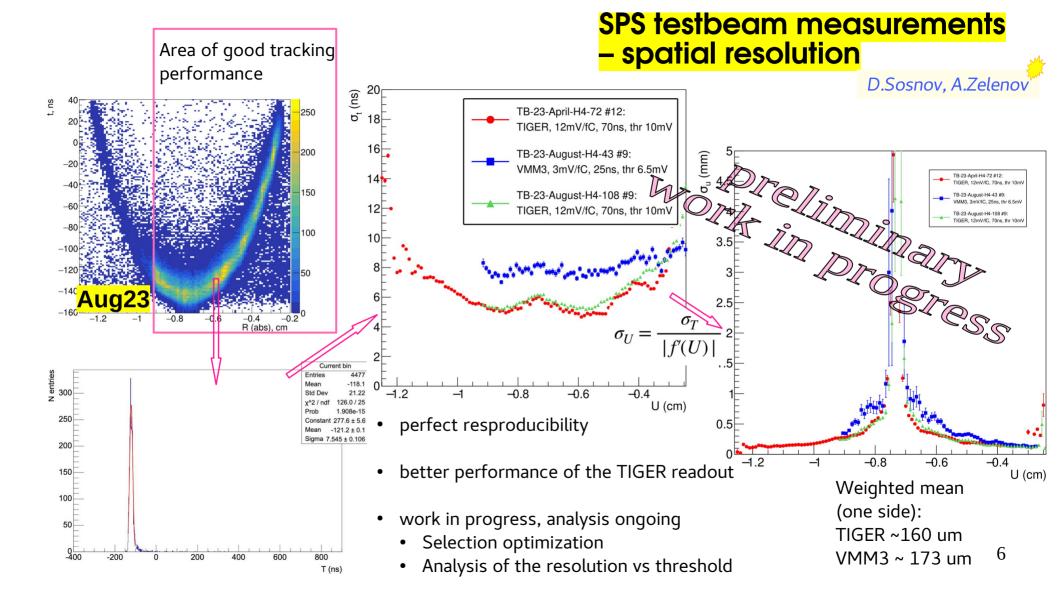

Oct 24, 2023

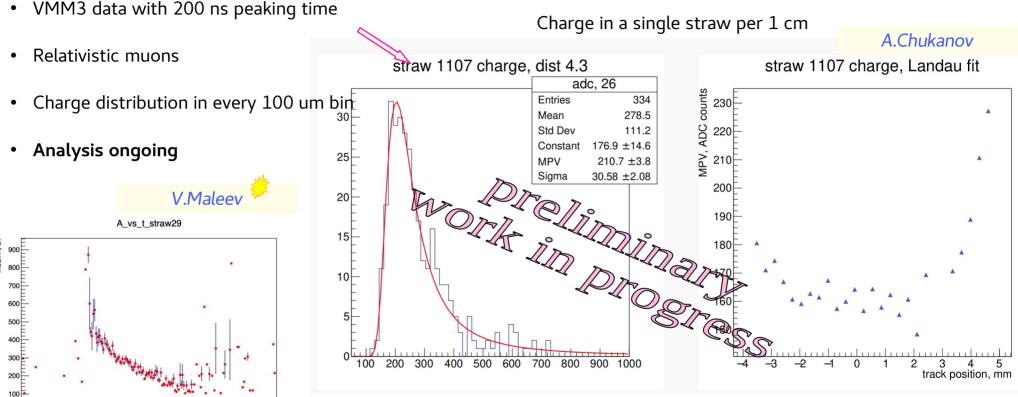

SPS testbeam measurements


<mark>goals</mark>

- Precise measurement of the **spatial resolution** for different readout parameters (gas and electronics gain, thresholds, pressure,...)
- Validation of the simulation results
- Evaluation of the realistic tracker readout parameters (noise, cross-talks)
- Evaluation of the **charge measurements performance** (MIP) with the available electronics
 - Direct charge measurements (VMM3, equivalent number of bits~8)
 - Time-over-threshold measurements (Tiger)
- Developing a set of measurements for the prototype quality control
- Preparation for the charge measurements at PS in 2024

SPS testbeam measurements





	VMM3	TIGER
Number of channels	64	64
Clock frequency	1080 MHz	160200 MHz
Input capacitance	<300 pF	<100 pF
Dynamic range	Linearity within $\pm 2\%$ up to 2 pC	50 fC
Gain	0.5, 1, 3, 6, 9, 12, 16 mV/fC	12 mV/fC
ENC (energy branch)	<3000	<1500
TDC binning	~1 ns	50 ps
Maximum event rate	140 kHz/ch	60 kHz/ch
Consumption	15 mW/ch	12 mW/ch

- Time measurements TIGER, VMM3@25 ns
- Charge measurements
 - VMM3@200 ns
 - TIGER with time-over-threshold (under development)

SPS testbeam measurements signal charge measurements

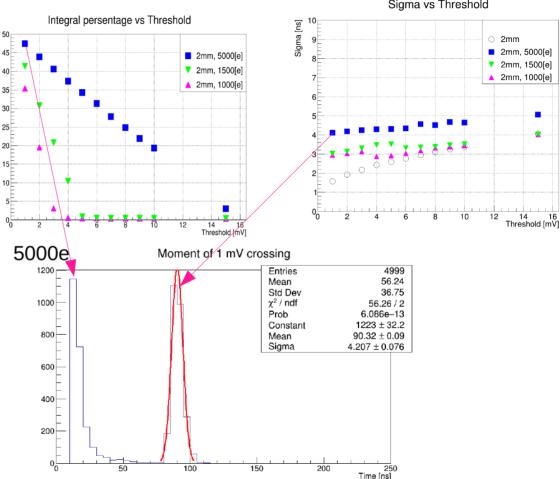
Oct 24, 2023

Garfield – some fixes is needed • (qain)

- communication with the developers
- X-checks with lab measurements •
- LTSpice ٠
 - Models of VMM3, Tiger •
 - Validation with TB data •
- Accounting for noise ٠
- Next steps: ٠

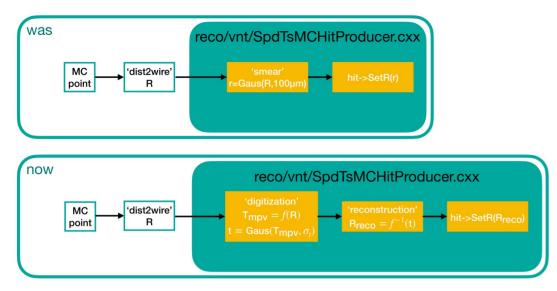
=> input to SPDroot (together with digitization, dynamic range etc)

=> ready for modelling custom readout (further development)


%

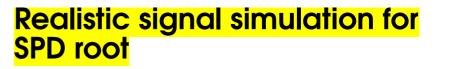
Integral | 35 30

25

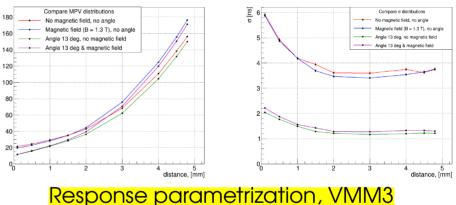

20

V.Bautin, S.Bulanova, A.Mukhamejanova,

Garfield/LTSpice

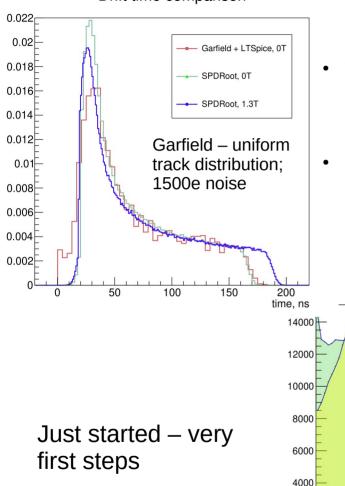

Sigma vs Threshold

- Parametrization in SPDRoot: perpendicular tracks, 0 T and 1.3 T;
- First MC test with particle gun 1 GeV muons, theta=90 degree, uniform phi
- MC thruth vs reconstructed hits
- Next steps:


Oct 24, 2023

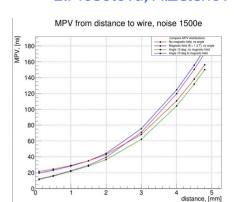
- Track reconstruction
- Detailed parametrization (different particles, momenta, magnetic field)

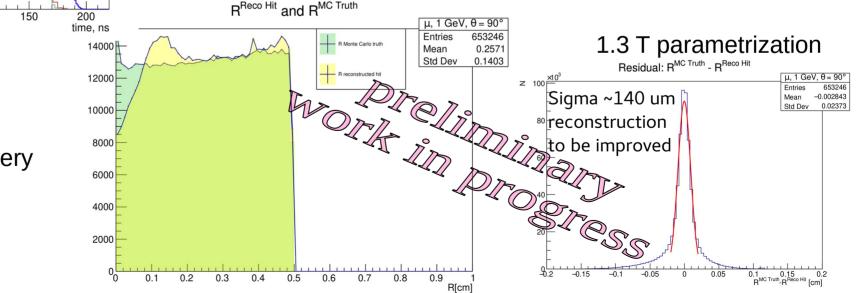
S.Bulanova, E.Mosolova. A.Zelenov


 $\sigma~\text{vs}$ distance to wire, noise 1500e

MPV vs distance to wire, noise 1500e

[ns]

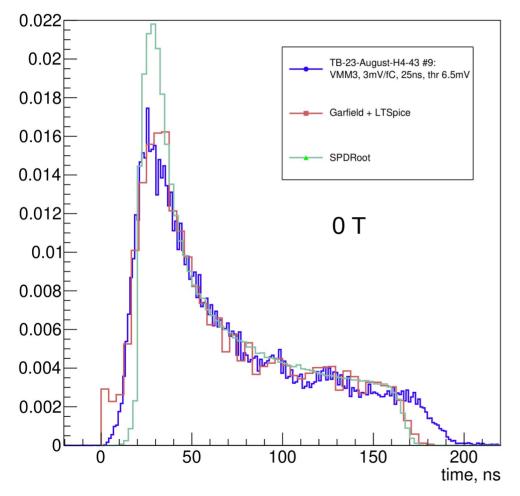

Рис. 13: (a) Зависимость MPV (ns) и (b) σ (ns) временных распределений от расстояния между треком и анодой проволокой.



Drift time comparison

Realistic signal simulation for SPD root S.Bulanova. E.Mosolova, A.Zelenov

- The parametrization approach works well, but does not include the specifics of noise "fakes" - to be accounted for additionally
- As was shown in Garfield/LTSpice studies, the magnetic field plays the role - should be accounted for in simulation and, the most important, reconstruction (to be done)



Oct 24, 2023

Testbeam – Garfield/LTSpice – SPDRoot

Drift time comparison

• Converging!

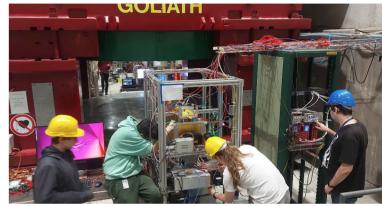
- Still a lot of work in all fields, nevertheless – the synergy does help
- Next steps
 - More detailed simulation + improved hit reconstruction
 - Implementation of the signal charge simulation + measurement into SPDRoot
 - TB analysis (MIP) started
 - TB analysis (low energy hadrons + electrons) – planned for 2024 at PS (CERN) and PNPI
 - Garfield/LTSpice started 11

Summary

Complimentary studies are ongoing:

- prototyping and material studies
- lab and testbeam measurements
- Garfield/LTSpice simulation
- development of the readout concept

Advanced test setup is developed, combining up to three independent DAQ systems synchronized for offline merging and providing the good reference time (~300 ps) and spatial (better than 70 um even without the timepix layer) resolutions.


A significant part of the measurements is done during the scheduled SPS test beam periods (3x2 week of intense muon beam) - including the possibility to use dedicated electronics (VMM3, Tiger, Timepix4). Extra-time at the beam dump gives possibility for North Area Schedule v2.0.0 :: Beamlines H2 and H4 :: Status 2023-09-03 17:30 (UTC)

debugging + slow remote data taking

Measurements dedicated to PID (E(h)<GeV) are considered to be done next year with the PS beam. Possibility to use synchrocyclotron beam at PNPI is also considered.

RAW T

Understanding the influence of the measured expected straw+readout performance on the track/charge reconstruction requires support with simulation studies Oct 24, 2023

Megaproject NICA

Work of S.Bulanova, V.Maleev, D.Sosnov and A.Zelenov was supported by программа целевого финансирования научно-исследовательских работ научных групп, отрудничающих в рамках мегапроекта «Комплекс NICA»,

The group made significant contribution to

- Test beam data taking (D.Sosnov)
- Test beam data analysis (A.Zelenov, D.Sosnov and V.Maleev)
- Garfield simulations (S.Bulanova)

The marked results were obtained within the work supported by the program

Readout electronics concept

Other (non-SPD) developments

Dune:

- triggerless
- identical requirements for time resolution
- similar requirements to charge measurements
- significantly lower bandwidth (<kHz)

Torino (post-Tiger):

- triggerless
- charge measurements adopted for MWPC/straws
- worse time resolution

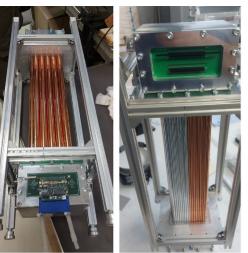
Other options:

Oct 24, 2023

- Time-Over-Threshold for charge measurements?

Though no direct match, the experience of the ongoing R&Ds is useful

-				
	rcibl			ition:
FU	SSIDI	IC S	Olu	
-				


Alexandr Solin

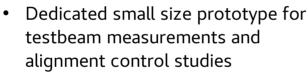
Параметры быстрого, временного канала				
Время формирования быстрого	6÷10			
канала, нс				
Разрешение временного канала,	1			
нс				
Регулировка порога	0.5÷15			
дискриминатора, фК	0.5 · 15			
ENC (r.m.s.), e	<1000			
Cd=60 пФ	~1000			
Временное окно ТАС, нс	500÷5000			
Параметры медленного, амплитудного канала				
Коэффициент преобразования	straw	micromegas		
медленного канала, мВ/фК	1/3	3/6/9		
Время формирования медленного	straw	micromegas		
канала, нс	75/150	75/150/250		
Ширина сигнала по основанию,	300/600	300/600/1000		
нс	300/000	300/000/1000		
Порядок формирователя	4			
Разрядность АЦП, бит	10			
ENC (r.m.s.), e	<1000			
Cd=60 пФ				

Параметры детектора		
Диапазон входных зарядов, фК	+/-(0÷1000)	
Емкость straw детектора, пФ	20÷100	
Загрузка на канал, кГц	150	
Режим работы	Бестриггерный	

Model exists

- can be used in Garfield/LTSpice Expected to be designed by April next year

Combined prototype

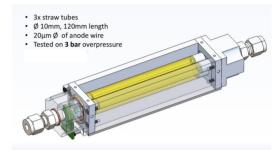

Straw and wire diameters:

20mm / 30um : SHiP type

10mm / 30um : SPD type

5mm / 20um :

NA62 upgrade (Cu/Au coating) DUNE (Al metallisation)


- Good for x-check with existing measurements (NA62, SHiP)
- Tests of x-talks, impedance measurements etc
- Lessons learned

....

• Calibration/termination connector from opposite side

prototyping

Various single straw or small assembly setups

Laboratory tests with sources:

- Gas gain measurements
- Tests with different custom readout
- Tests with different gas mixtures

Further prototypes

- Single straw max length for lab tests
- Assembly with a stereo-angle? Which angle??

Oct 24, 2023

diamet