
VI SPD Collaboration Meeting. 26.10.2023
Oleynik Danila.

SPD OnLine Filter.
Current status and next steps.

SPD Online filter
Reminder :-)

• SPD Online Filter is a high performance computing
system for high throughput processing

• High speed (parallel) storage system for input data

written by DAQ.

• Compute cluster with two types of units: multi-

CPU and hybrid multi CPU + Neural network
accelerators (GPU, FPGA etc.)

• A set of dedicated servers for middleware which
will manage processing workflow, monitoring and
other service needs.

• Buffer for intermediate output and for data
prepared for transfer to long-term storage and
future processing.

2

Initial data
• Free run DAQ, means that the output of the

system will not be a dataset of raw events,
but a set of signals from detectors organized
in time slices

• Primary data unit: time slice (~10 μs) 
Time slices combined in time frames (1-10
sec.)

• Every slice will contain signals from a few to
many collisions (events)

• Event building have to unscramble events
from a series of time slices

3

Base payload

4

Data unpacking

ML Reco Classic reco

Event building

Online polarimetry Event selection Performance and data

quality monitor

Merge and packing data for offline processing

Online filter
Software part

• Middleware - software complex for management of multistep data
processing and efficient loading (usage) of computing facility

• Workflow management

• Data management

• Workload management

• Applied software - performs actual data processing

• Framework - responsible for unified algorithm interfaces, IO, multithreading

etc.

• Algorithms - responsible for a single pieces of processing

5

Middleware
Data management;

• Support of data life-cycle and storage usage;
Workflow management;

• Definition of processing chains;
• Realisation of processing chains as set of

computations tasks;
• Management of tasks execution;

Workload management:

• Generation of required number of processing

jobs for performing of task;
• Control of jobs executions through pilots,

which works on compute nodes;

6

Middleware
Current status
• Each subsystem were engineered and partially prototyped

• Microservice architecture with domain driven design was chosen

• Flexibility, scalability, easy for long-term support

• Data management

• dsm-register – responsible for registration of input data from DAQ in the

catalogue

• dsm-manager – realise interfaces to the catalogue for subsystems

• dsm-inspector – realise auxiliary tools for storage management

(consistency check, cleanup, dark data identification)

7

Middleware
Current status 2
• Workflow management

• “Chain definer” - user oriented application which allow define sequences of processing steps

• “Processing starter” - microservice responsible for triggering of processing chains

• “Chain executor” - microservice responsible for control of execution of processing chain

• Workload management

• Realize a task execution process by shredding a required number of jobs to provide

controlled loading to compute facility, tacking into account priority of tasks and associated
jobs. A task is one step in a processing chain of a block of data. Job is a processing of a
single piece of data (file or few files).

• Microservices: task manager, task executor, job manager, job executor

• Base architecture and initial functionality of pilot application is defined. It is a multithread

application with interactions between threads through queues

8

SPD Online filter middleware
next steps

• Manpower: two PHD students, one full time researcher

• A couple of master students recently joined

• Development, testing, integration infrastructure

• Deployment procedures etc.

• Integration with applied software (framework)

9

Event unscrambling

For each time slice

- Reconstruct tracks and associate them with

vertices

- Determine bunch crossing time for each vertex

- Associate ECAL and RS hits with each vertex (by

timestamp)

- Attach unassociated tracker hits in a selected

time window according to bunch crossing time

- Attach raw data from other subdetectors

according to bunch crossing time

- Name the block of information associated with

each vertex an event

- Store reconstructed events

10

Debugging requirements

• Initial testing:

• Agreed interfaces and data formats

• Simplified simulated data: properly packed “white noise”

• Low amount of data (<<0,1% of expected average)

• Functional testing:

• Simulated data partially close to real data, which will allows debugging of some algorithms,

and some workflows

• Data amount (0,1 - 1% of expected average)

• Pre-production testing:

• Simulated data of whole systems

• Data amount (1 - 10% of expected average)

11

Debugging workflow
• Offline system:

• MC production with incremental growth of simulated data

• Agreed data organisation (to allow different types of debugging)

• Physics group: algorithms and data production control

• Step by step improvement of Online filter prototype

• Estimation of required set of services: software distribution and deployment

• Formalisation of workflows

• Subsidiary data sources: mapping, geometry etc.

• VM to real HW (on small scale)

12

General plan for next 6 months
• OnLine filter

• More attention to framework and reco. algorithms: simulated data is

needed

• MC production workflow in offline system:

• Agreed data model and data organization

• Data management system in place

• MC data production policies

• Definition and implementation of obvious data processing pipelines

• Running up of the SOF-DAQ testbed

13

Thank you!

DAQ & Online filter testbed in MLIT

15

