Spin-dependent event simulation

Briefly I will talk on the following topics:
\square Longitudinal double spin asymmetries ($A_{L L}$)
\square Transverse double spin asymmetries ($A_{T T}$)
\square Transverse singe spin asymmetries (A_{N})

Longitudinal double spin asymmetries I

$$
\begin{aligned}
& \mathrm{d} \sigma^{(A B)}\left(P_{A} ; P_{B}\right)=\sum_{a, b} \int \mathrm{~d} x_{A} \mathrm{~d} x_{B} f_{a}^{A}\left(x_{A}, \mu^{2}\right) f_{b}^{B}\left(x_{B}, \mu^{2}\right) \mathrm{d} \hat{\sigma}_{a, b}\left(x_{A} P_{A}, x_{B} P_{B}, \mu\right) \\
& \hat{s}=\left(x_{A} P_{A}+x_{B} P_{B}\right)^{2}, \quad \hat{t}=\left(x_{A} P_{A}-k_{1}\right)^{2}, \text { and } \quad \hat{u}=\left(x_{A} P_{A}-k_{2}\right)^{2} \\
& A_{L L}^{(A B)}\left(x_{A}, x_{B}, \hat{s}, \hat{t}, \hat{u}, \mu^{2}\right)=\frac{\Delta f_{a}^{A}\left(x_{A}, \mu\right)}{f_{a}^{A}\left(x_{A}, \mu\right)} \frac{\Delta f_{b}^{B}\left(x_{B}, \mu\right)}{f_{b}^{B}\left(x_{B}, \mu\right)} \frac{\Delta \hat{\sigma}_{a, b}\left(\hat{s}, \hat{t}, \hat{u}, \mu^{2}\right)}{\hat{\sigma}_{a, b}\left(\hat{s}, \hat{t}, \hat{u}, \mu^{2}\right)}
\end{aligned}
$$

Longitudinal double spin asymmetries II

PYTHIA6 based event generator exists:

- Sphinx v1.1-Monte Carlo Program for Polarized Nucleon-Nucleon Collisions arXiv:hep-ph/9612278
- Developed some 20-25 years ago. It was used mainly for BNL spin physics program preparation in 90s. Sources were found on webarchive.

Table 1: List of processes implemented in the polarized mode.

ISUB	Process	Comment
1	$q_{i} \bar{q}_{j} \rightarrow \gamma^{*} / Z^{0}$	quark-antiquark annihilation into virtual γ^{*} / Z^{0}
2	$q_{i} \bar{q}_{j} \rightarrow W^{ \pm}$	annihilation into charged vector boson
11	$q_{i} q_{j} \rightarrow q_{i} q_{j}$	(anti-)quark - (anti-)quark scattering; anni- hilation diagram not included
12	$q_{i} \bar{q}_{i} \rightarrow q_{k} \bar{q}_{k}$	annihilation process
13	$q_{i} \bar{q}_{i} \rightarrow g g$	annihilation into gluon pair
14	$q_{i} \bar{q}_{i} \rightarrow g \gamma$	annihilation into gluon and prompt γ
15	$q_{i} \bar{q}_{i} \rightarrow g Z^{0}$	annihilation into gluon and Z^{0}
16	$q_{i} \bar{q}_{i} \rightarrow g W^{ \pm}$	annihilation into gluon and $W^{ \pm}$
18	$q_{i} \bar{q}_{i} \rightarrow \gamma \gamma$	annihilation into γ pair
19	$q_{i} \bar{q}_{i} \rightarrow \gamma Z^{0}$	annihilation into γ and Z^{0}
20	$q_{i} \bar{q}_{i} \rightarrow \gamma W^{ \pm}$	annihilation into γ and $W^{ \pm}$
28	$q_{i} g \rightarrow q_{i} g$	(anti-)quark - gluon scattering
29	$q_{i} g \rightarrow q_{i} \gamma$	prompt γ production in (anti-)quark - gluon scattering
30	$q_{i} g \rightarrow q_{i} Z^{0}$	Z^{0} production in (anti-)quark - gluon scattering
31	$q_{i} g \rightarrow q_{j} W^{ \pm}$	$W^{ \pm}$production in (anti-)quark - gluon scattering
53	$g g \rightarrow q_{k} \bar{q}_{k}$	gluon fusion
68	$g g \rightarrow g g$	gluon - gluon scattering

Pythia process number	partonic reaction	partonic asymmetry $\frac{\Delta \theta}{\sigma}$	remark
11	$q q^{\prime} \rightarrow q q^{\prime}$	$\left(\hat{s}^{2}-\hat{u}^{2}\right) /\left(\hat{s}^{2}+\hat{u}^{2}\right)$	
	$q \bar{q}^{\prime} \rightarrow q \vec{q}^{\prime}$	$\left(\hat{s}^{2}-\hat{u}^{2}\right) /\left(\hat{s}^{2}+\hat{u}^{2}\right)$	
	$q \bar{q} \rightarrow q \bar{q}$	$\left[\hat{s}\left(\hat{s}^{2}-\hat{u}^{2}\right)+\frac{2}{3} \mathcal{L} \hat{t}^{2} / \mathcal{K}\right] /\left[\hat{s}\left(\hat{s}^{2}+\hat{u}^{2}\right)-\frac{2}{3} \mathcal{L} \hat{t} \hat{u}^{2} / \mathcal{K}\right]$	\hat{t} - and \hat{u}-channel only
	$q q \rightarrow q q$	$\left(\hat{s}^{2}-\hat{u}^{2}\right) /\left(\hat{s}^{2}+\hat{u}^{2}\right)$	colour flow scenario 1
		$\left[\hat{t}\left(\hat{s}^{2}-\hat{t}^{2}\right)-\frac{2}{3} \mathcal{T} \hat{s}^{2} \hat{u}\right] /\left[\hat{t}\left(\hat{s}^{2}+\hat{t}^{2}\right)-\frac{2}{3} \mathcal{L} \hat{s}^{2} \hat{u}\right]$	colour flow scenario 2
12	$q \bar{q} \rightarrow q \bar{q}$	-1	\hat{s}-channel only
	$q \bar{q} \rightarrow q^{\prime} \bar{q}^{\prime}$	-1	
13	$q \bar{q} \rightarrow g g$	-1	
14	$q \bar{q} \rightarrow g \gamma$	-1	
18	$q \bar{q} \rightarrow \gamma \gamma$	-1	
28	$q g \rightarrow q g$	-1	colour flow scenario 1
29	$q g \rightarrow q \gamma$	$\begin{gathered} \stackrel{1}{\left(\hat{s}^{2}-\hat{u}^{2}\right) /\left(\hat{s}^{2}+\hat{u}^{2}\right)} \end{gathered}$	colour flow scenario 2
53	$g g \rightarrow q \bar{q}$	-1	
68	$g g \rightarrow g g$	$-\left[\hat{t}^{2}+2 \hat{s} \hat{t}\left(\hat{s}^{2}+\hat{t}^{2}\right)+3 \hat{s}^{2} \hat{t}^{2}\right] /\left[\hat{s}^{2}+\hat{t}^{2}+2 \hat{s} \hat{t}\left(\hat{s}^{2}+\hat{t}^{2}\right)+3 \hat{s}^{2} \hat{t}^{2}\right]$	colour flow scenario 1
		$\left.-\left[\hat{u}^{2}+2 \hat{s} \hat{u} \hat{(} \hat{s}^{2}+\hat{u}^{2}\right)+3 \hat{s}^{2} \hat{u}^{2}\right] /\left[\hat{s}^{2}+\hat{u}^{2}+2 \hat{s} \hat{u}\left(\hat{s}^{2}+\hat{u}^{2}\right)+3 \hat{s}^{2} \hat{u}^{2}\right]$	colour flow scenario 2
		$2\left[\hat{t} \hat{u}\left(\hat{t}^{2}+\hat{u}^{2}\right)+3 \hat{t}^{2} \hat{u}^{2}\right] /\left[\hat{t}^{2}+\hat{u}^{2}+2 \hat{t} \hat{u}\left(\hat{t}^{2}+\hat{u}^{2}\right)+3 \hat{t}^{2} \hat{u}^{2}\right]$	colour flow scenario 3

$\Delta G\left(x, \mu^{2}\right)$ from jet and prompt photon production at RHIC O. Martin and A. Schäfer

Longitudinal double spin asymmetries III

First $A_{\text {LL }}$ simulation results with SPHINX
fake polarization, built up from unpolarized distribution according to $\Delta q=\frac{\operatorname{MSTP}(178)}{100} q$

pt pi+

pt pio

pt pi-

pt gamma

xf pi+

xf pio

xf gamma

Another option to take into account polarization is partonic a_{LL} weighting, procedure is accessible with STAR software on github:

G Generate events as usual, but recording event history, all lines plus some kinematics (generator truth GT).
\square Optionally pass through the setup and reconstruct, keeping GT. Or apply some cuts to make the sample close to what setup can detect.
\square Calculate asymmetry (do not forget Q2 evolution of PDFs)

$$
A_{L L} \sim P_{1} P_{2} \hat{a}_{L L}=\frac{\Delta f_{1}\left(x_{1}, Q^{2}\right)}{f_{1}\left(x_{1}, Q^{2}\right)} \frac{\Delta f_{2}\left(x_{2}, Q^{2}\right)}{f_{2}\left(x_{2}, Q^{2}\right)} \hat{a}_{L L}(\hat{s}, \hat{t}, \hat{u})
$$

$\mathrm{N}+-$ random Poisson distributed (mean is average yield per bunch)

$$
\begin{gathered}
\mu_{ \pm}=\left(1 \pm P_{b_{1}} P_{b_{2}} A_{L L}\right) N_{e f f} \\
A_{L L}^{\text {recon }}=\frac{1}{P_{b_{1}} P_{b_{2}}} \frac{N_{+}-N_{-}}{N_{+}+N_{-}} \\
\delta A_{L}=\frac{1}{P_{b_{1}} P_{b_{2}}} \sqrt{\frac{1-\left(P_{b_{1}} P_{b_{2}} A_{L L}\right)^{2}}{N_{+}+N_{-}}}
\end{gathered}
$$

25.10.2023 SPD meeting

Transverse double spin asymmetries I

$$
\mathrm{d} \sigma^{(A B)}\left(P_{A} ; P_{B}\right)=\sum_{a, b} \int \mathrm{~d} x_{A} \mathrm{~d} x_{B} f_{a}^{A}\left(x_{A}, \mu^{2}\right) f_{b}^{B}\left(x_{B}, \mu^{2}\right) \mathrm{d} \hat{\sigma}_{a, b}\left(x_{A} P_{A}, x_{B} P_{B}, \mu\right)
$$

$$
\hat{s}=\left(x_{A} P_{A}+x_{B} P_{B}\right)^{2}, \quad \hat{t}=\left(x_{A} P_{A}-k_{1}\right)^{2}, \text { and } \quad \hat{u}=\left(x_{A} P_{A}-k_{2}\right)^{2}
$$

$$
A^{T T}=\frac{\mathrm{d} \sigma^{\uparrow \uparrow}-\mathrm{d} \sigma^{\uparrow \downarrow}}{\mathrm{d} \sigma^{\uparrow \uparrow}+\mathrm{d} \sigma^{\uparrow \downarrow}}
$$

Parton process $a b \rightarrow c d$	Spin Avcrage Cross Scction $-\sigma_{a b}^{c d}$	Helicity Depandent Cross Scction $-\Delta \sigma_{a b}^{c d}$	Transversity Dependent $\text { Cross Scetion }-\delta \sigma_{a b}^{c d}$
$q \bar{q} \rightarrow \rightarrow \ell \bar{\ell}$	$\frac{\dot{u}^{2}+i^{2}}{z^{2}}$	$-\frac{i^{2}+i^{2}}{\dot{z}^{2}}$	$\frac{1}{3^{2}}$
$q Q \rightarrow q Q$		$\frac{\hat{j}^{2}-\hat{i}^{2}}{t^{2}}+\frac{\dot{j}^{2}-\hat{i}^{2}}{i^{2}}-\frac{2}{3} \frac{\dot{j}^{2}}{\underline{u} \hat{i}}$	$\frac{2}{3 \dot{\chi} \dot{u}}$
$q q^{\prime} \rightarrow q q^{\prime}$	$\frac{j^{2}+\dot{u}^{2}}{t^{2}}$	$\frac{\dot{j}^{2}-\hat{i}^{2}}{t^{2}}$	-
$q \bar{q} \rightarrow q \bar{q}$			$\frac{2}{5^{2}}-\frac{2}{3 s t}$
$q \bar{q} \rightarrow q^{\prime} \bar{q}$	$\frac{i^{2}+i^{2}}{3^{2}}$	$-\frac{\hat{u}^{2}+\dot{t}^{2}}{\dot{j}^{2}}$	$\frac{2}{3^{2}}$
$q \vec{q}^{\prime} \rightarrow q \vec{q}$	$\frac{\dot{j}^{2}+\dot{u}^{2}}{i^{2}}$	$\frac{\hat{j}^{2}-i^{2}}{i^{2}}$	-
$q \bar{q} \rightarrow g g$	$\frac{8}{3} \frac{i^{2}+\dot{u}^{2}}{t u}-6 \frac{i^{2}+\dot{u}^{2}}{s^{2}}$	$-\frac{8}{3} \frac{i^{2}+\dot{u}^{2}}{t u}{ }^{\text {a }}$	$\frac{16}{3 \dot{t}}-\frac{12}{5^{2}}$
$q g \rightarrow q g$	$\frac{9}{4} \frac{\dot{j}^{2}+\dot{u}^{2}}{i^{2}}-\frac{\dot{j}^{2}+\dot{u}^{2}}{i \dot{u}}$		-
$g g \rightarrow g g$			-
$g g \rightarrow q \bar{q}$	$\frac{9}{8}\left(\frac{1}{3} \frac{\dot{u}^{2}+t^{2}}{u} \hat{i} \hat{i}-\frac{3}{4} \frac{i^{2}+\dot{u}^{2}}{j^{2}}\right)$		-
$q g \rightarrow \gamma q$	$\frac{1}{3} \frac{\dot{z}^{2}+i^{2}}{\bar{j} t}$	$\frac{1}{3} \frac{\dot{x}^{2}-\hat{i}^{2}}{\bar{j} \hat{t}}$	-
$q \bar{q} \rightarrow g \gamma$	$\frac{8}{9} \frac{i^{2}+\dot{u}^{2}}{t u}$	$-\frac{8}{9} \frac{i^{2}+\dot{u}^{2}}{t i u}$	$\frac{8}{9} \frac{2}{u t}$

$$
\text { Table iii: Parton cross sections and asymmetries. Each entry multiplies a factor of } \frac{4 \pi \alpha_{\bar{u}}}{9 \mathbf{s}^{2}} \text {, except for the first }
$$

addition, helicity entries multiply ± 1 according to whether the beam helicities are equal $(+\mathbf{1})$ or opposite $(\mathbf{- 1})$, and transversity entries multiply the kinematic factor $\left\{\hat{u} \hat{t} S_{a} \cdot S_{b}-\hat{s}\left(S_{a} \cdot k_{a} S_{b} \cdot k_{b}+S_{b} \cdot k_{a} S_{a} \cdot k_{b}\right)\right\}$,
which is proportional to $\sin ^{2} \theta \cos 2 \phi$ in the parton-parton center of mass frame.

$$
A_{D Y}^{T T}=\frac{\sin ^{2} \hat{\theta} \cos 2 \hat{\phi}}{1+\cos ^{2} \hat{\theta}} \frac{\sum_{i} e_{i}^{2} \delta q_{i}\left(x_{A}, Q^{2}\right) \delta \bar{q}_{i}\left(x_{B}, Q^{2}\right)+A \leftrightarrow B}{\sum_{i} e_{i}^{2} q_{i}\left(x_{A}, Q^{2}\right) \bar{q}_{i}\left(x_{B}, Q^{2}\right)+A \leftrightarrow B}
$$

Transverse double spin asymmetries II

SPHINX TT - Monte Carlo Program for Nucleon-Nucleon Collisions with Transverse Polarization
arXiv:hep-ph/9612305

ISUB	Process	Comment
11	$q_{i} q_{j} \rightarrow q_{i} q_{j}$	(anti-)quark - (anti-)quark scattering; annihilation is not included
12	$q_{i} \bar{q}_{i} \rightarrow q_{k} \bar{q}_{k}$	annihilation process
13	$q_{i} \bar{q}_{i} \rightarrow g g$	annihilation into gluon pair
14	$q_{i} \bar{q}_{i} \rightarrow g \gamma$	annihilation into gluon and prompt γ
18	$q_{i} \bar{q}_{i} \rightarrow \gamma \gamma$	annihilation into γ-pair
28	$q_{i} g \rightarrow q_{i} g$	(anti-)quark - gluon scattering
29	$q_{i} g \rightarrow q_{i} \gamma$	prompt γ-production in (anti-)quark - gluon scattering
53	$g g \rightarrow q_{k} \bar{q}_{k}$	gluon fusion
68	$g g \rightarrow g g$	gluon - gluon scattering
191	$q_{i} \bar{q}_{i} \rightarrow f_{k} \bar{f}_{k}$	annihilation into lepton-pair or quark - (anti-)quark pair (Drell-Yan process); this process is new and equivalent to the γ-piece of ISUB=1 in PYTHIA

Table 1: List of processes implemented in the polarized mode
MC-Simulation of the Transverse Double Spin Asymmetry for RHIC arXiv:hep-ph/9607470

$$
\begin{aligned}
& A^{T T}=\frac{\mathrm{d} \sigma^{\uparrow \uparrow}-\mathrm{d} \sigma^{\uparrow \downarrow}}{\mathrm{d} \sigma^{\uparrow \uparrow}+\mathrm{d} \sigma^{\uparrow \downarrow}} \\
& A_{D Y}^{T T}=\frac{\sin ^{2} \hat{\theta} \cos 2 \hat{\phi}}{1+\cos ^{2} \hat{\theta}} \frac{\sum_{i} e_{i}^{2} \delta q_{i}\left(x_{A}, Q^{2}\right) \delta \bar{q}_{i}\left(x_{B}, Q^{2}\right)+A \leftrightarrow B}{\sum_{i} e_{i}^{2} q_{i}\left(x_{A}, Q^{2}\right) \bar{q}_{i}\left(x_{B}, Q^{2}\right)+A \leftrightarrow B} \\
& \text { First simulation result } \\
& \text { with SPHINX-TT }
\end{aligned}
$$

Transverse single spin asymmetries I

Transverse single spin asymmetry, also called left-right asymmetry (observed using certain azimuthal angle range)

$$
p\left(P, S_{T}\right)+p\left(P^{\prime}\right) \rightarrow \pi\left(P_{h}\right)+X
$$

$$
A_{N}=\frac{\sigma_{\uparrow}-\sigma_{\downarrow}}{\sigma_{\uparrow}+\sigma_{\downarrow}}
$$

$A_{N} \equiv \frac{d \Delta \sigma\left(S_{T}\right)}{d \sigma}$, where $d \Delta \sigma\left(S_{T}\right) \equiv \frac{1}{2}\left[d \sigma\left(S_{T}\right)-d \sigma\left(-S_{T}\right)\right]$, and $\quad d \sigma \equiv \frac{1}{2}\left[d \sigma\left(S_{T}\right)+d \sigma\left(-S_{T}\right)\right]$
L. Gamberg, Zh. Kang, D. Pitonyak, A. Prokudin JLAB-THY-17-2405
[3] A. V. Efremov and O. V. Teryaev, Sov. J. Nucl. Phys. 36, 140 (1982).
[4] A. V. Efremov and O. V. Teryaev, Phys. Lett. B150, 383 (1985).
[5] J.-W. Qiu and G. Sterman, Phys. Rev. Lett. 67, 2264 (1991).
[6] J.-W. Qiu and G. Sterman, Nucl. Phys. B378, 52 (1992).
[7] J.-W. Qiu and G. Sterman, Phys. Rev. D59, 014004 (1998), hep-ph/9806356.

$$
\begin{aligned}
& E_{h} \frac{d \sigma}{d^{3} \vec{P}_{h}}=\frac{\alpha_{S}^{2}}{S} \sum_{i} \sum_{a, b, c} \int_{0}^{1} \frac{d z}{z^{2}} \int_{0}^{1} \frac{d x^{\prime}}{x^{\prime}} \int_{0}^{1} \frac{d x}{x} \delta(\hat{s}+\hat{t}+\hat{u}) f_{1}^{a}(x) f_{1}^{b}\left(x^{\prime}\right) D_{1}^{\pi / c}(z) S_{U}^{i} \\
& E_{h} \frac{d \Delta \sigma\left(S_{T}\right)}{d^{3} \vec{P}_{h}}=E_{h} \frac{\left.d \Delta \sigma^{Q} S_{(} S_{T}\right)}{d^{3} \vec{P}_{h}}+E_{h} \frac{d \Delta \sigma^{F r a g}\left(S_{T}\right)}{d^{3} \vec{P}_{h}}
\end{aligned}
$$

Transverse single spin asymmetries II

$$
\begin{aligned}
& E_{h} \frac{d \Delta \sigma^{Q S}\left(S_{T}\right)}{d^{3} \vec{P}_{h}}=-\frac{4 \alpha_{S}^{2} M}{S} \epsilon^{P^{P} P P_{h} S_{T}} \sum_{i} \sum_{a, b, c} \int_{0}^{1} \frac{d z}{z^{3}} \int_{0}^{1} d x^{\prime} \int_{0}^{1} d x \delta(\hat{s}+\hat{t}+\hat{u}) \frac{\pi}{\hat{s} \hat{u}} \\
& \times f_{1}^{b}\left(x^{\prime}\right) D_{1}^{\pi / c}(z)\left[F_{F T}^{a}(x, x)-x \frac{d F_{F T}^{a}(x, x)}{d x}\right] S_{F_{F T}}^{i}, \\
& E_{h} \frac{d \Delta \sigma^{F r a g}\left(S_{T}\right)}{d^{3} \vec{P}_{h}}=-\frac{4 \alpha_{s}^{2} M_{h}}{S} \epsilon^{P^{P} P P_{h} S_{T}} \sum_{i} \sum_{a, b, c} \int_{0}^{1} \frac{d z}{z^{3}} \int_{0}^{1} d x^{\prime} \int_{0}^{1} d x \delta(\hat{s}+\hat{t}+\hat{u}) \frac{1}{\hat{s}\left(-x^{\prime} \hat{t}-x \hat{u}\right)} \\
& \times h_{1}^{a}(x) f_{1}^{b}\left(x^{\prime}\right)\left\{\left[H_{1}^{\perp(1), \pi / c}(z)-z \frac{d H_{1}^{\perp(1), \pi / c}(z)}{d z}\right] S_{H_{1}^{\perp}}^{i}+\frac{1}{z} H^{\pi / c}(z) S_{H}^{i}+\frac{2}{z} \int_{z}^{\infty} \frac{d z_{1}}{z_{1}^{2}} \frac{1}{\left(\frac{1}{z}-\frac{1}{z_{1}}\right)^{2}} \hat{H}_{F U}^{\pi / c, \tilde{s}}\left(z, z_{1}\right) S_{\hat{H}_{F U}}^{i}\right\}
\end{aligned}
$$

L. Gamberg, M. Malda, J. Miller, D. Pitonyak, A. Prokudin, N.Sato JLAB-THY-22-3604 TMD fit

Observable	Reactions	Non-Perturbative Function(s)
$A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}$	$e+(p, d)^{\uparrow} \rightarrow e+\left(\pi^{+}, \pi^{-}, \pi^{0}\right)+X$	$f_{1 T}^{\perp}\left(x, \vec{k}_{T}^{2}\right)$
$A_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}$	$e+(p, d)^{\uparrow} \rightarrow e+\left(\pi^{+}, \pi^{-}, \pi^{0}\right)+X$	$h_{1}\left(x, \vec{k}_{T}^{2}\right), H_{1}^{\perp}\left(z, z^{2} \vec{p}_{T}^{2}\right)$
${ }^{*} A_{U T}^{\sin \phi_{S}}$	$e+p^{\uparrow} \rightarrow e+\left(\pi^{+}, \pi^{-}, \pi^{0}\right)+X$	$h_{1}(x), \tilde{H}(z)$
$A_{U C / U L}$	$e^{+}+e^{-} \rightarrow \pi^{+} \pi^{-}(U C, U L)+X$	$H_{1}^{\perp}\left(z, z^{2} \vec{p}_{T}^{2}\right)$
$A_{T, \mu}^{\sin \phi_{S}}$	$\pi^{-}+p^{\uparrow} \rightarrow \mu^{+} \mu^{-}+X$	$f_{1 T}^{\perp}\left(x, \vec{k}_{T}^{2}\right)$
$A_{N}^{W / Z}$	$p^{\uparrow}+p \rightarrow\left(W^{+}, W^{-}, Z\right)+X$	$f_{1 T}^{\perp}\left(x, \vec{k}_{T}^{2}\right)$
A_{N}^{π}	$p^{\uparrow}+p \rightarrow\left(\pi^{+}, \pi^{-}, \pi^{0}\right)+X$	$h_{1}(x), F_{F T}(x, x)=\frac{1}{\pi} f_{1 T}^{\perp(1)}(x), H_{1}^{\perp(1)}(z), \tilde{H}(z)$
Lattice g_{T}	-	$h_{1}(x)$

TMDs, $\sqrt{s}, \mathrm{x}_{\mathrm{F}}, \mathrm{p}_{\mathrm{T}}$, product $\left(\Pi^{+}, \Pi^{-}, \Pi^{0}, \mathrm{y}\right) \rightarrow \mathrm{A}_{\mathrm{N}}$
can be tried for PYTHIA event weighting

Conclusion

\square There are some options for the polarization asymmetry calculation on the event basis
My opinion that it might be useful to start with event weighting approach
\square There is preparatory work on hyperon polarization ($D_{L L}, D_{T T}$) estimator

Backup

Thank you

Example of generator truth information (taken from EIC PYTHIA):

I:	
ievent:	eventnumber running from 1 to XXX
genevent:	trials to generate this event
subprocess:	pythia subprocess (MSTI(1)), for details see table
nucleon:	hadron beam type (MSTI(12))
targetparton:	parton hit in the target (MSTI(16))
xtargparton:	x of target parton (PARI(34))
beamparton:	in case of resolved photon processes and soft VM
xbeamparton:	x of beam parton (PARI(33))
thetabeamparton:	theta of beam parton (PARI(53))
truey, trueQ2, truex, trueW2, trueNu:	are the kinematic variables of the event.
	If radiative corrections are turned on they are diffe\|
	If radiative corrections are turned off they are the s
leptonphi:	phi of the lepton (VINT(313))
s_hat:	shat of the process (PARI(14))
t hat:	Mandelstam t (PARI(15))
u hat:	Mandelstm u (PARI(16))
pt2 hat:	pthat^2 of the hard scattering (PARI(18))
Q2_hat:	Q2hat of the hard scattering (PARI(22)),

nrTracks:		number of tracks in this event, includes also virtual particles
- 4th line:		
I:		line index, runs from 1 to nrTracks
$K(1,1)$:	status code KS (1: stable particles 11: particles which decay 55; radiative photon)	
$K(1,2)$:	particle KF code (211: pion, 2112:n,)	
$K(1,3):$	line number of parent particle	
$K(1,4)$:	normally the line number of the first daughter; it is 0 for an undecayed particle or unfragmented parton	
$K(1,5):$	normally the line number of the last daughter; it is 0 for an undecayed particle or unfragmented parton.	
$\mathrm{P}(1,1)$:	px of particle	
$P(1,2)$:	py of particle	
$\mathrm{P}(1,3)$:	pz of particle	
$\mathrm{P}(1,4)$:	Energy of particle	
$P(1,5):$	mass of particle	
$V(1,1)$:	x vertex information	
$V(1,2):$	y vertex information	
$V(1,3):$	z vertex information	

Longitudinal spin transfer to hyperons in pp

Hyperon production with high pT:
[(Un)Polarised PDFs, (un)polarized fragmentation functions,

- QCD crossections 2->2 (spin-dependent and not)
\square Transmitted asymmetries give degree of final quark polarisation

$$
\begin{gathered}
\frac{d^{2} \sigma^{p p \rightarrow H X}}{d p_{T} d \eta}=\sum_{a b c d} \int d x_{a} d x_{b} d z_{c} f_{a}\left(x_{a}, \mu^{2}\right) f_{b}\left(x_{b}, \mu^{2}\right) \frac{d \hat{\sigma}_{(a b \rightarrow c d)}}{d p_{T} d \eta} D_{c}^{H}\left(z_{c}, \mu^{2}\right) \\
\frac{d^{2} \Delta \sigma}{d p_{T} d \eta}=\sum_{a b c d} \int d x_{a} d x_{b} d z_{c} \Delta f_{a}\left(x_{a}, \mu^{2}\right) f_{b}\left(x_{b}, \mu^{2}\right) \frac{d \Delta \hat{\sigma}^{(\overrightarrow{a b} \rightarrow c d)}}{d p_{T} d \eta} \Delta D_{c}^{H}\left(z_{c}, \mu^{2}\right) \\
\text { Spin-dependent PDF }
\end{gathered}
$$

$\vec{p} \boldsymbol{p} \rightarrow \boldsymbol{H} \boldsymbol{X}$

Spin dependent fragmentation function

$$
D_{L L} \equiv \frac{\sigma_{p^{+} p \rightarrow \bar{\Lambda}^{+} X}-\sigma_{p^{+} p \rightarrow \bar{\Lambda}^{-} X}}{\sigma_{p^{+} p \rightarrow \bar{\Lambda}^{+} X}+\sigma_{p^{+} p \rightarrow \bar{\Lambda}^{-} X}}=\frac{d \Delta \sigma}{d \sigma}
$$

Spin transfer to hyperons in pp

Transmitted asymmetries:

$$
A^{\Lambda} \equiv \frac{d \Delta \sigma^{p \vec{p} \rightarrow \vec{\Lambda} X} / d \eta}{d \sigma^{p p \rightarrow \Lambda X} / d \eta}
$$

De Florian et al 1998

Dıextraction technics

$$
\frac{d N}{d \cos \theta}=\frac{N_{\text {tot }}}{2} A(\cos \theta)(1+\alpha P \cos \theta)
$$

A($\cos \theta)$ - acceptance, needs MC. However using beam polarization reversal (and setup symmetry in η is suitable) it is possible to extract Λ polarization without MC, or without direct acceptance determination.

- HERMES method

$$
\begin{aligned}
& \begin{array}{l}
\text { Helicity } \\
\text { balanced } \\
\text { data sample }
\end{array} \quad \square D_{L L^{i}}=\frac{\sum_{i=1}^{N} P_{b, i} D\left(y_{i}\right) \cos \theta_{p L^{i}}^{i}}{\alpha\left\|P_{b}^{2}\right\| \sum_{i=1}^{N} D^{2}\left(y_{i}\right) \cos ^{2} \theta_{p L^{i}}^{i}}
\end{aligned}
$$

- RHIC method $D_{L L}$ has been extracted from Λ counts with opposite beam polarization within a small interval of $\cos \theta^{*}$:

$$
\begin{aligned}
D_{L L} & =\frac{1}{\left.\alpha \cdot P_{\text {beam }}<\cos \theta^{*}\right\rangle} \cdot \frac{N^{+}-N^{-}}{N^{+}+N^{-}}, \text {where the acceptance cancels. } \\
N_{\Lambda}^{+} & =N^{++} \frac{L_{--}}{L_{++}}+N^{+-} \frac{L_{--}}{L_{+-}} \\
N_{\Lambda}^{-} & =N^{-+} \frac{L_{---}}{L_{-+}}+N^{--}
\end{aligned}
$$

Relative luminosity ratio measured with BBC, and $\mathrm{P}_{\text {beam }}$ in RHIC.

RHIC results on $D_{\text {LL }}$

(a) Longitudinal spin transfer to Λ.

(b) Longitudinal spin transfer to $\bar{\Lambda}$.

$$
x_{T}=\frac{2 p_{\Lambda T}}{\sqrt{s}} .
$$

At $200 \mathrm{GeV} / \mathrm{c}, \mathrm{pt}=6 \mathrm{GeV} / \mathrm{c} \quad \mathrm{xt}=0.06$

Eur. Phys. J. C (2019) 79:409

Longitudinal spin transfer to Λ in DIS

Keywords: $\Delta s, \Delta \bar{s}(x) \quad \Delta s \neq \Delta \bar{s}(x)$?, spin-dependent
$\Lambda^{0} \rightarrow p+\pi^{-}$ FF , intrinsic strangeness of the nucleon
$\frac{d N}{d \Omega_{p}}=\frac{d N_{0}}{d \Omega_{p}}\left(1+\alpha P_{L^{\prime}}^{\Lambda} \cos \theta_{p L^{\prime}}\right)$

$$
P_{\wedge}=\frac{\sum_{q} e_{q}^{2}\left[P_{b} D(y) q(x)+P_{T} \Delta q(x)\right] \Delta D_{q}^{\wedge}(z)}{\sum_{q} e_{q}^{2}\left[q(x)+P_{b} P_{T} D(y) \Delta q(x)\right] D_{q}^{\wedge}(z)}
$$

$\alpha=0.642$ for $\Lambda(\alpha=-0.642$ for $\bar{\Lambda})$
$L^{\prime} \rightarrow \Lambda$ spin direction

$$
P_{L}=D_{L L}^{\Lambda} \cdot P_{b} \cdot D(y)
$$

S. Belostotski DSPIN12

