

Spin-dependent event simulation

Briefly I will talk on the following topics:

- □ Longitudinal double spin asymmetries (A_{LL})
- □ Transverse double spin asymmetries (A_{TT})
- □ Transverse singe spin asymmetries (A_N)

V. Alexakhin VBLHEP JINR

25.10.2023 SPD Coollaboration meeting

Longitudinal double spin asymmetries I

$d\sigma^{(AB)}(P_A; P_B) = \sum_{a,b} \int dx_A dx_B f_a^A(x_A, \mu^2) f_b^B(x_B, \mu^2) d\hat{\sigma}_{a,b}(x_A P_A, x_B P_B, \mu)$
$\hat{s} = (x_A P_A + x_B P_B)^2$, $\hat{t} = (x_A P_A - k_1)^2$, and $\hat{u} = (x_A P_A - k_2)^2$
$A_{LL}^{(AB)}(x_A, x_B, \hat{s}, \hat{t}, \hat{u}, \mu^2) = \frac{\Delta f_a^A(x_A, \mu)}{f_a^A(x_A, \mu)} \frac{\Delta f_b^B(x_B, \mu)}{f_b^B(x_B, \mu)} \frac{\Delta \hat{\sigma}_{a,b}(\hat{s}, \hat{t}, \hat{u}, \mu^2)}{\hat{\sigma}_{a,b}(\hat{s}, \hat{t}, \hat{u}, \mu^2)}$

Parton process $ab ightarrow cd$	Spin Average Cross Section — σ_{st}^{cd}	Helicity Dependent Cross Section — $\Delta \sigma^{cd}_{ab}$	â	C A
$q\bar{q} ightarrow \ell \bar{\ell}$	$\frac{\dot{u}^2 + \dot{t}^2}{\dot{s}^2}$	$-\frac{\dot{u}^2+\dot{t}^2}{\dot{s}^2}$	0.75	P
qq ightarrow qq qq' ightarrow qq'	$\frac{\frac{s^{2}+\dot{u}^{2}}{\dot{t}^{2}}+\frac{s^{2}+\dot{t}^{2}}{\dot{u}^{2}}-\frac{2}{3}\frac{\dot{s}^{2}}{\dot{u}\dot{t}}}{\frac{\dot{s}^{2}+\dot{u}^{2}}{\dot{t}^{2}}}$	$\frac{\frac{s^{2}-\dot{u}^{2}}{\dot{t}^{2}}+\frac{s^{2}-\dot{t}^{2}}{\dot{u}^{2}}-\frac{2}{3}\frac{\dot{s}^{2}}{\dot{u}\dot{t}}}{\frac{\dot{s}^{2}-\dot{u}^{2}}{\dot{t}^{2}}}$	0.25	D
$q\bar{q} ightarrow q\bar{q}$	$\frac{\frac{\dot{s}^2 + \dot{u}^2}{\dot{t}^2} + \frac{\dot{u}^2 + \dot{t}^2}{\dot{s}^2} - \frac{2}{3}\frac{\dot{u}^2}{\dot{s}\dot{t}}}{\dot{u}^2 + \dot{t}^2}}{\dot{u}^2 + \dot{t}^2}$	$\frac{\dot{s}^2 - \dot{u}^2}{\dot{t}^2} - \frac{\dot{u}^2 + \dot{t}^2}{\dot{s}^2} + \frac{2}{3} \frac{\dot{u}^2}{\dot{s}\dot{t}} - \frac{\dot{u}^2 + \dot{t}^2}{\dot{s}^2}$	0	
$q q ightarrow q q q$ $q \overline{q}' ightarrow q \overline{q}'$	$\frac{\dot{s}^2}{\dot{t}^2}$	$\frac{-\frac{1}{\tilde{s}^2}}{\frac{\tilde{s}^2-\tilde{u}^2}{\tilde{t}^2}}$	-0.25	$\begin{array}{c} A gg \rightarrow gg D q\overline{q} \rightarrow q\overline{q} \\ B ga \rightarrow gg E gg \rightarrow g\overline{q} \end{array}$
$egin{array}{l} q ar q o g g \ q g o q g \end{array}$	$\frac{\frac{8}{3}\frac{\dot{t}^{2}+\dot{u}^{2}}{\dot{t}\dot{u}}-6\frac{\dot{t}^{2}+\dot{u}^{2}}{\dot{s}^{2}}}{\frac{9}{4}\frac{\dot{s}^{2}+\dot{u}^{2}}{\dot{t}^{2}}-\frac{\dot{s}^{2}+\dot{u}^{2}}{\dot{u}\dot{s}}}$	$-\frac{8}{3}\frac{\dot{s}^{2}+\dot{u}^{2}}{\dot{t}\dot{u}}+6\frac{\dot{t}^{2}+\dot{u}^{2}}{\dot{s}^{2}}$ $\frac{9}{4}\frac{\dot{s}^{2}-\dot{u}^{2}}{\dot{t}^{2}}-\frac{\dot{s}^{2}-\dot{u}^{2}}{\dot{u}\dot{s}}$	-0.5	$\begin{array}{c} & D \ qq \ \gamma qq \ D \ gg \ \gamma qq \\ & C \ qq \ \gamma qq \ qq \ \gamma qq \ q\overline{q} \rightarrow gg \\ & q\overline{q} \ \gamma q\overline{q} \ \gamma q\overline{q} \ \gamma q\overline{q} \rightarrow gg \\ & q\overline{q} \ \gamma q\overline{q} \ \gamma q\overline{q} \ \gamma q\overline{q} \rightarrow gg \\ & q\overline{q} \ \gamma q\overline{q} \ \gamma q\overline{q} \ \gamma q\overline{q} \rightarrow g\gamma \\ & q\overline{q} \ \gamma q\overline{q} \ \gamma q\overline{q} \ \gamma q\overline{q} \rightarrow g\gamma \\ & q\overline{q} \ \gamma q\overline{q} \ \gamma q\overline{q} \ \gamma q\overline{q} \rightarrow g\gamma \\ & q\overline{q} \ \gamma q\overline{q} \ \gamma q\overline{q} \ \gamma q\overline{q} \rightarrow g\gamma \\ & q\overline{q} \ \gamma q $
gg ightarrow gg	$\frac{81}{8} \left(3 - \frac{\hat{s}\hat{u}}{\hat{t}^2} - \frac{\hat{s}\hat{t}}{\hat{u}^2} - \frac{\hat{u}\hat{t}}{\hat{s}^2}\right)$	$\frac{81}{8}(-3+2\frac{\dot{s}^2}{\dot{u}\dot{t}}+\frac{\dot{u}\dot{t}}{\dot{s}^2})$	-0.75	$\begin{array}{cccc} & qg \rightarrow qg & qq \rightarrow q^{2}q^{2} \\ & qg \rightarrow q\gamma & q\overline{q} \rightarrow l\overline{l} \end{array}$
gg ightarrow qar q	$\frac{9}{8} \left(\frac{1}{3} \frac{\dot{u}^2 + \dot{t}^2}{\dot{u}\dot{t}} - \frac{3}{4} \frac{\dot{t}^2 + \dot{u}^2}{\dot{s}^2} \right) \\ \frac{1}{3} \frac{\dot{s}^2 + \dot{t}^2}{\dot{s}^2}$	$-\frac{9}{8} \left(\frac{1}{3} \frac{\dot{u}^2 + \dot{t}^2}{\dot{u}\dot{t}} - \frac{3}{4} \frac{\dot{t}^2 + \dot{u}^2}{\dot{s}^2} \right)$ $\frac{1}{3} \frac{\dot{s}^2 - \dot{t}^2}{\dot{s}^2}$	-1	- E
$q \bar{q} ightarrow g \gamma$	$\frac{8}{9} \frac{\frac{t^2}{t^2} + \dot{u}^2}{t\dot{u}}$	$-\frac{8}{9}\frac{t^2+\dot{u}^2}{t\dot{u}}$	_	$-0.8 -0.4 0 0.4 0.8 \cos \theta$

ISUB Process

 $1 \quad q_i \bar{q}_j \to \gamma^* / Z^0$

 $2 \quad q_i \bar{q}_i \to W^{\pm}$

11 $q_i q_j \rightarrow q_i q_j$

12 $q_i \bar{q}_i \rightarrow q_k \bar{q}_k$

13 $q_i \bar{q}_i \rightarrow gg$

14 $q_i \bar{q}_i \rightarrow g \gamma$

15 $q_i \bar{q}_i \rightarrow g Z^0$ 16 $q_i \bar{q}_i \rightarrow g W^{\pm}$

18 $q_i \bar{q}_i \rightarrow \gamma \gamma$

19 $q_i \bar{q}_i \rightarrow \gamma Z^0$

20 $q_i \bar{q}_i \rightarrow \gamma W^{\pm}$

28 $q_i g \rightarrow q_i g$ 29 $q_i g \rightarrow q_i \gamma$

 $30 \quad q_i g \to q_i Z^0$

31 $q_i g \rightarrow q_j W^{\pm}$

53 $gg \rightarrow q_k \bar{q}_k$

 $68 \quad gg \rightarrow gg$

Longitudinal double spin asymmetries II

PYTHIA6 based event generator exists:

- **Sphinx v1.1 Monte Carlo Program for Polarized Nucleon-Nucleon Collisions** arXiv:hep-ph/9612278
- Developed some 20-25 years ago. It was used mainly for BNL spin physics program preparation in 90s. Sources were found on webarchive.

Comment process number reaction	
quark-antiquark annihilation into virtual	
$\frac{\gamma^*/Z^0}{11} \qquad \qquad 11 \qquad qq' \to qq' \qquad \qquad \left(\hat{s}^2 - \hat{u}^2\right) / \left(\hat{s}^2 + \hat{u}^2\right)$	
annihilation into charged vector boson $q\vec{q}' \rightarrow q\vec{q}'$ $(\hat{s}^2 - \hat{u}^2) / (\hat{s}^2 + \hat{u}^2)$	
(anti-)quark – (anti-)quark scattering; anni- 1 listical line and $\hat{\mu} = \hat{\mu} \hat{\mu} \hat{\mu} \hat{\mu} \hat{\mu} \hat{\mu} \hat{\mu} \hat{\mu}$	unel only
$\frac{1}{4} \frac{1}{4} \frac{1}$	mer omy
anniniation process $qq \rightarrow qq$ $(\hat{s}^{\epsilon} - \hat{u}^{\epsilon})/(\hat{s}^{\epsilon} + \hat{u}^{\epsilon})$ colour flow s	cenario 1
annihilation into gluon pair $\left[\hat{t}\left(\hat{s}^2-\hat{t}^2\right)-\frac{2}{3}\mathcal{I}\hat{s}^2\hat{u}\right]/\left[\hat{t}\left(\hat{s}^2+\hat{t}^2\right)-\frac{2}{3}\mathcal{I}\hat{s}^2\hat{u}\right]$ colour flow s	cenario 2
annihilation into gluon and prompt γ	L
annihilation into gluon and Z^0 12 $qq \rightarrow qq$ -1 s-channel on	ly
annihilation into gluon and W^{\pm} $q\bar{q} \rightarrow q'\bar{q}'$ -1	
annihilation into γ pair 13 $q\bar{q} \rightarrow gg$ -1	
annihilation into γ and Z^0	
annihilation into γ and W^{\pm}	
(anti-)quark – gluon scattering 18 $q\bar{q} \rightarrow \gamma\gamma$ –1	
prompt γ production in (anti-)quark – gluon 28 $qg \rightarrow qg$ -1 colour flow s	cenario 1
scattering 1 colour flow s	enario 2
Z^0 production in (anti-)quark – gluon 29 $qg \rightarrow q\gamma$ $(\hat{s}^2 - \hat{u}^2)/(\hat{s}^2 + \hat{u}^2)$	2
scattering 52	
W^{\pm} production in (anti-)quark – gluon 53 $gg \rightarrow qq$ -1	
scattering 68 $gg \to gg - [\hat{t}^2 + 2\hat{s}\hat{t}(\hat{s}^2 + \hat{t}^2) + 3\hat{s}^2\hat{t}^2] / [\hat{s}^2 + \hat{t}^2 + 2\hat{s}\hat{t}(\hat{s}^2 + \hat{t}^2) + 3\hat{s}^2\hat{t}^2]$ colour flow s	cenario 1
$\frac{g \text{luon fusion}}{-\left[\hat{u}^2 + 2\hat{s}\hat{u}\left(\hat{s}^2 + \hat{u}^2\right) + 3\hat{s}^2\hat{u}^2\right] / \left[\hat{s}^2 + \hat{u}^2 + 2\hat{s}\hat{u}\left(\hat{s}^2 + \hat{u}^2\right) + 3\hat{s}^2\hat{u}^2\right]} \text{colour flow s}$	cenario 2
gluon – gluon scattering $2\left[\hat{t}\hat{u}\left(\hat{t}^2+\hat{u}^2\right)+3\hat{t}^2\hat{u}^2\right]/\left[\hat{t}^2+\hat{u}^2+2\hat{t}\hat{u}\left(\hat{t}^2+\hat{u}^2\right)+3\hat{t}^2\hat{u}^2\right] \qquad \text{colour flow s}$	cenario 3

Table 1: List of processes implem

 $\Delta G(x,\mu^2)$ from jet and prompt photon production at RHIC O. Martin and A. Schäfer

Longitudinal double spin asymmetries III

First A_{LL} simulation results with SPHINX

"Polarized" PYTHIA

Another option to take into account polarization is partonic a_{LL} weighting, procedure is accessible with STAR software on github:

- □ Generate events as usual, but recording event history, all lines plus some kinematics (generator truth GT).
- Optionally pass through the setup and reconstruct, keeping GT. Or apply some cuts to make the sample close to what setup can detect.
- Calculate asymmetry (do not forget Q2 evolution of PDFs)

$$A_{LL} \sim P_1 P_2 \hat{a}_{LL} = \frac{\Delta f_1(x_1, Q^2)}{f_1(x_1, Q^2)} \frac{\Delta f_2(x_2, Q^2)}{f_2(x_2, Q^2)} \hat{a}_{LL}(\hat{s}, \hat{t}, \hat{u})$$

N+- random Poisson distributed (mean is average yield per bunch)

$$\mu_{\pm} = (1 \pm P_{b_1} P_{b_2} A_{LL}) N_{eff}$$

$$A_{LL}^{recon} = \frac{1}{P_{b_1}P_{b_2}} \frac{N_+ - N_-}{N_+ + N_-}$$
$$\delta A_{LL} = \frac{1}{P_{b_1}P_{b_2}} \sqrt{\frac{1 - (P_{b_1}P_{b_2}A_{LL})^2}{N_+ + N_-}}$$

25.10.2023 SPD meeting

V. Alexakhin LHEP JINR

Transverse double spin asymmetries I

$$d\sigma^{(AB)}(P_A; P_B) = \sum_{a,b} \int dx_A dx_B f_a^A(x_A, \mu^2) f_b^B(x_B, \mu^2) d\hat{\sigma}_{a,b}(x_A P_A, x_B P_B, \mu)$$

$$\hat{s} = (x_A P_A + x_B P_B)^2, \quad \hat{t} = (x_A P_A - k_1)^2, \text{ and } \quad \hat{u} = (x_A P_A - k_2)^2$$

$$A^{TT} = \frac{d\sigma^{\uparrow\uparrow} - d\sigma^{\uparrow\downarrow}}{d\sigma^{\uparrow\uparrow} + d\sigma^{\uparrow\downarrow}}$$

Parton process	Spin Average	Helicity Dependent	Transversity Dependent	$(2\hat{a} + 2\hat{b} + 2\hat{b} + 2\hat{c} + 2$
ab ightarrow cd	Cross Section — σ^{cl}_{ab}	Cross Section — $\Delta \sigma^{cd}_{ab}$	Cross Section — $\delta \sigma^{cd}_{ab}$	$A_{DY}^{TT} = \frac{\sin^2 \theta \cos 2\phi}{1 + \cos^2 \theta} \frac{\sum_i e_i^2 \delta q_i(x_A, Q^2) \delta q_i(x_B, Q^2) + A \leftrightarrow B}{\sum_i e_i^2 q_i(x_A, Q^2) \bar{q}_i(x_B, Q^2) + A \leftrightarrow B}$
$q\bar{q} ightarrow ightarrow \ell \bar{\ell}$	$\frac{\dot{u}^2 + \dot{t}^2}{\dot{s}^2}$	$-\frac{\dot{u}^2+\dot{t}^2}{\dot{s}^2}$	1 	$1 + \cos^2 \theta \qquad \sum_i c_i q_i(x_A, \mathcal{Q}_i) q_i(x_B, \mathcal{Q}_i) + A \leftrightarrow D$
qq ightarrow qq	$rac{\dot{s}^2+\dot{u}^2}{\dot{t}^2}+rac{\dot{s}^2+\dot{t}^2}{\dot{u}^2}-rac{2}{3}rac{\dot{s}^2}{\dot{u}\dot{t}}$	$rac{\dot{s}^2-\dot{u}^2}{\dot{t}^2}+rac{\dot{s}^2-\dot{t}^2}{\dot{u}^2}-rac{2}{3}rac{\dot{s}^2}{\dot{u}\dot{t}}$	2 3tû	1 50
qq' ightarrow qq'	$\frac{\dot{s}^2 + \dot{u}^2}{\dot{t}^2}$	$\frac{\dot{s}^2-\dot{u}^2}{\dot{t}^2}$	—	
q ar q o q ar q	$rac{\dot{s}^2+\dot{u}^2}{\dot{t}^2}+rac{\dot{u}^2+\dot{t}^2}{\dot{s}^2}-rac{2}{3}rac{\dot{u}^2}{\dot{s}\dot{t}}$	$rac{\dot{s}^2-\dot{u}^2}{\dot{t}^2}-rac{\dot{u}^2+\dot{t}^2}{\dot{s}^2}+rac{2}{3}rac{\dot{u}^2}{\dot{s}\dot{t}}$	$\frac{2}{\tilde{s}^2}-\frac{2}{3\tilde{s}\tilde{t}}$	
$q \bar{q} ightarrow q' ar{q}'$	$\frac{\dot{u}^2 + \dot{t}^2}{\dot{s}^2}$	$-\frac{\dot{u}^2+\dot{t}^2}{\dot{s}^2}$	$\frac{2}{\tilde{s}^2}$	
$q \bar q' o q \bar q'$	$\frac{\dot{s}^2 + \dot{u}^2}{\dot{t}^2}$	$\frac{\dot{s}^2-\dot{u}^2}{\dot{t}^2}$	—	0.25 D
q ar q o g g	$\tfrac{8}{3} \tfrac{\dot{t}^2 + \dot{u}^2}{\dot{t}\dot{u}} - 6 \tfrac{\dot{t}^2 + \dot{u}^2}{\dot{s}^2}$	$-rac{8}{3}rac{\dot{t}^2+\dot{u}^2}{\dot{t}\dot{u}}+6rac{\dot{t}^2+\dot{u}^2}{\dot{s}^2}$	$\frac{16}{3t\hat{u}} - \frac{12}{\tilde{s}^2}$	В
qg ightarrow qg	$\frac{9}{4}\frac{\dot{s}^2+\dot{u}^2}{\dot{t}^2}-\frac{\dot{s}^2+\dot{u}^2}{\dot{u}\dot{s}}$	$\frac{9}{4}\frac{\check{s}^2-\check{u}^2}{\check{t}^2}-\frac{\check{s}^2-\check{u}^2}{\check{u}\check{s}}$	—	
gg ightarrow gg	$rac{81}{8}(3-rac{\dot{s}\dot{u}}{\dot{t}^2}-rac{\dot{s}\dot{t}}{\dot{u}^2}-rac{\dot{u}\dot{t}}{\dot{s}^2})$	$rac{81}{8}(-3+2rac{\dot{s}^2}{\dot{u}\dot{t}}+rac{\dot{u}\dot{t}}{\dot{s}^2})$	—	$-0.25 \begin{bmatrix} D & q\bar{q} \rightarrow q\bar{q} \\ F & E \end{bmatrix}$
$gg ightarrow q \overline{q}$	$\frac{9}{8} \big(\frac{1}{3} \frac{\dot{u}^2 + \dot{t}^2}{\dot{u}\dot{t}} - \frac{3}{4} \frac{\dot{t}^2 + \dot{u}^2}{\dot{s}^2} \big)$	$-\tfrac{9}{8} \big(\tfrac{1}{3} \tfrac{\dot{u}^2 + \tilde{t}^2}{\dot{u}\tilde{t}} - \tfrac{3}{4} \tfrac{\tilde{t}^2 + \dot{u}^2}{\tilde{s}^2} \big)$	—	$-0.5 \begin{bmatrix} 0 & q\bar{q} \rightarrow gg \\ -0.5 \end{bmatrix} = \frac{q\bar{q} \rightarrow gg}{q\bar{q} \rightarrow gg}$
$qg ightarrow \gamma q$	$\frac{1}{3}\frac{\dot{s}^2+\dot{t}^2}{\dot{s}\dot{t}}$	$\frac{1}{3}\frac{\dot{s}^2-\dot{t}^2}{\dot{s}\dot{t}}$	—	$\begin{array}{c} qq \rightarrow g \gamma \\ q \overline{q} \rightarrow q' \overline{q}' \end{array}$
$qar q o g \gamma$	$\frac{8}{9}\frac{\frac{\tilde{t}^2+\tilde{u}^2}{\tilde{t}\tilde{u}}$	$-\frac{8}{9}\frac{\frac{t^2}{t^2}+\dot{u}^2}{\dot{t}\dot{u}}$	$\frac{8}{9}\frac{2}{\hat{u}t}$	-0.75 $q\bar{q} \rightarrow ll$
Table iii: Par	ton cross sections and asymmetr	ies. Each entry multiplies a factor	of $\frac{4\pi \alpha_{\tilde{a}}}{9\tilde{s}^2}$, except for the first	

-0.8

-0.4

0

0.4

 $\cos \theta$

Table iii: Parton cross sections and asymmetries. Each entry multiplies a factor of $\frac{4\pi\alpha_x^2}{9\delta^2}$, except for the first (Drell-Yan) which multiplies $\frac{4\pi\alpha_{xm}^2\epsilon_x^2}{3\delta^2}$, and the last (prompt γ production) which multiplies $\frac{\pi\alpha_x\alpha_{xm}\epsilon_x^2}{\delta^2}$. In addition, helicity entries multiply ± 1 according to whether the beam helicities are equal (+1) or opposite (-1), and transversity entries multiply the kinematic factor $\{\hat{u}\hat{t}S_a \cdot S_b - \hat{s}(S_a \cdot k_aS_b \cdot k_b + S_b \cdot k_aS_a \cdot k_b)\}$, which is proportional to $\sin^2\theta\cos 2\phi$ in the parton-parton center of mass frame.

0

Transverse double spin asymmetries II

SPHINX TT - Monte Carlo Program for Nucleon-Nucleon Collisions with Transverse Polarization arXiv:hep-ph/9612305

ISUB	Process	Comment
11	$q_i q_j \rightarrow q_i q_j$	(anti-)quark – (anti-)quark scattering;
		annihilation is not included
12	$q_i \bar{q}_i o q_k \bar{q}_k$	annihilation process
13	$q_i \bar{q}_i o gg$	annihilation into gluon pair
14	$q_i \bar{q}_i o g\gamma$	annihilation into gluon and prompt γ
18	$q_i \bar{q}_i o \gamma \gamma$	annihilation into γ -pair
28	$q_ig \to q_ig$	(anti-)quark – gluon scattering
29	$q_ig ightarrow q_i\gamma$	prompt γ -production in (anti-)quark –
		gluon scattering
53	$gg \to q_k \bar{q}_k$	gluon fusion
68	$gg \rightarrow gg$	gluon – gluon scattering
191	$q_i \bar{q}_i \rightarrow f_k \bar{f}_k$	annihilation into lepton-pair
		or quark – (anti-)quark pair
		(Drell-Yan process); this process is new
		and equivalent to the γ -piece of
		ISUB=1 in Pythia

Table 1: List of processes implemented in the polarized mode

MC-Simulation of the Transverse Double Spin Asymmetry for RHIC arXiv:hep-ph/9607470

$$A^{TT} = \frac{\mathrm{d}\sigma^{\uparrow\uparrow} - \mathrm{d}\sigma^{\uparrow\downarrow}}{\mathrm{d}\sigma^{\uparrow\uparrow} + \mathrm{d}\sigma^{\uparrow\downarrow}}$$

$$A_{DY}^{TT} = \frac{\sin^2 \hat{\theta} \cos 2\hat{\phi}}{1 + \cos^2 \hat{\theta}} \frac{\sum_i e_i^2 \delta q_i(x_A, Q^2) \,\delta \bar{q}_i(x_B, Q^2) + A \leftrightarrow B}{\sum_i e_i^2 q_i(x_A, Q^2) \,\bar{q}_i(x_B, Q^2) + A \leftrightarrow B}$$

Transverse single spin asymmetries I

Transverse single spin asymmetry, also called left-right asymmetry (observed using certain azimuthal angle range)

$$A_{N} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}}$$

$$p(P, S_T) + p(P') \rightarrow \pi(P_h) + X$$

$$A_N \equiv \frac{d\Delta\sigma(S_T)}{d\sigma}, \text{ where } d\Delta\sigma(S_T) \equiv \frac{1}{2} \left[d\sigma(S_T) - d\sigma(-S_T) \right], \text{ and } d\sigma \equiv \frac{1}{2} \left[d\sigma(S_T) + d\sigma(-S_T) \right]$$

L. Gamberg, Zh. Kang, D. Pitonyak, A. Prokudin JLAB-THY-17-2405

- [3] A. V. Efremov and O. V. Teryaev, Sov. J. Nucl. Phys. 36, 140 (1982).
- [4] A. V. Efremov and O. V. Teryaev, Phys. Lett. B150, 383 (1985).
- [5] J.-W. Qiu and G. Sterman, Phys. Rev. Lett. 67, 2264 (1991).
- [6] J.-W. Qiu and G. Sterman, Nucl. Phys. B378, 52 (1992).
- [7] J.-W. Qiu and G. Sterman, Phys. Rev. D59, 014004 (1998), hep-ph/9806356.

$$E_h \frac{d\sigma}{d^3 \vec{P}_h} = \frac{\alpha_s^2}{S} \sum_i \sum_{a,b,c} \int_0^1 \frac{dz}{z^2} \int_0^1 \frac{dx'}{x'} \int_0^1 \frac{dx}{x} \,\delta(\hat{s} + \hat{t} + \hat{u}) \,f_1^a(x) \,f_1^b(x') \,D_1^{\pi/c}(z) \,S_U^i(z) \,dx'$$

$$E_h \frac{d\Delta\sigma(S_T)}{d^3 \vec{P}_h} = E_h \frac{d\Delta\sigma^{QS}(S_T)}{d^3 \vec{P}_h} + E_h \frac{d\Delta\sigma^{Frag}(S_T)}{d^3 \vec{P}_h}$$

Transverse single spin asymmetries II

$$\begin{split} E_h \frac{d\Delta\sigma^{QS}(S_T)}{d^3 \vec{P}_h} &= -\frac{4\alpha_s^2 M}{S} \,\epsilon^{P'PP_h S_T} \sum_i \sum_{a,b,c} \int_0^1 \frac{dz}{z^3} \int_0^1 dx' \int_0^1 dx \,\,\delta(\hat{s} + \hat{t} + \hat{u}) \frac{\pi}{\hat{s}\hat{u}} \\ &\times \,f_1^b(x') \, D_1^{\pi/c}(z) \left[F_{FT}^a(x,x) - x \frac{dF_{FT}^a(x,x)}{dx} \right] S_{F_{FT}}^i \,, \end{split}$$

$$\begin{split} E_{h} \frac{d\Delta\sigma^{Frag}(S_{T})}{d^{3}\vec{P}_{h}} &= -\frac{4\alpha_{s}^{2}M_{h}}{S} \,\epsilon^{PPP_{h}S_{T}} \sum_{i} \sum_{a,b,c} \int_{0}^{1} \frac{dz}{z^{3}} \int_{0}^{1} dx' \int_{0}^{1} dx \,\,\delta(\hat{s}+\hat{t}+\hat{u}) \frac{1}{\hat{s}(-x'\hat{t}-x\hat{u})} \\ &\times h_{1}^{a}(x) \,f_{1}^{b}(x') \left\{ \left[H_{1}^{\perp(1),\pi/c}(z) - z \frac{dH_{1}^{\perp(1),\pi/c}(z)}{dz} \right] S_{H_{1}^{\perp}}^{i} + \frac{1}{z} H^{\pi/c}(z) \,S_{H}^{i} \right. \\ &+ \frac{2}{z} \int_{z}^{\infty} \frac{dz_{1}}{z_{1}^{2}} \frac{1}{\left(\frac{1}{z} - \frac{1}{z_{1}}\right)^{2}} \hat{H}_{FU}^{\pi/c,\mathfrak{I}}(z,z_{1}) \,S_{\hat{H}_{FU}}^{i} \end{split}$$

L. Gamberg, M. Malda, J. Miller, D. Pitonyak, A. Prokudin, N.Sato JLAB-THY-22-3604 TMD fit

Observable	Reactions	Non-Perturbative Function(s)					
$A_{UT}^{\sin(\phi_h - \phi_S)}$	$e + (p,d)^{\uparrow} \rightarrow e + (\pi^+,\pi^-,\pi^0) + X$	$f_{1T}^{\perp}(x, \vec{k}_T^2)$	0.100				
$A_{UT}^{\sin(\phi_h + \phi_S)}$	$e + (p,d)^{\uparrow} \to e + (\pi^+, \pi^-, \pi^0) + X$	$h_1(x, \vec{k}_T^2), H_1^{\perp}(z, z^2 \vec{p}_T^2)$	0.075				
$A_{UT}^{\sin \phi_S}$	$e + p^{\uparrow} \rightarrow e + (\pi^+, \pi^-, \pi^0) + X$	$h_1(x), \hat{H}(z)$	2			/	
$A_{UC/UL}$	$e^+ + e^- \rightarrow \pi^+ \pi^- (UC, UL) + X$	$H_1^\perp(z,z^2ec p_T^2)$	▼ 0.050				
$A_{T,\mu^+\mu^-}^{\sin\phi_S}$	$\pi^- + p^\uparrow \to \mu^+ \mu^- + X$	$f_{1T}^{\perp}(x,ec{k}_T^2)$		STAR π^0	· /		
$A_N^{W/Z}$	$p^{\uparrow} + p \rightarrow (W^+, W^-, Z) + X$	$f_{1T}^{\perp}(x,ec{k}_T^2)$	0.025				
A_N^π	$p^{\uparrow} + p \rightarrow (\pi^+, \pi^-, \pi^0) + X$	$h_1(x), F_{FT}(x,x) = \frac{1}{\pi} f_{1T}^{\perp(1)}(x), H_1^{\perp(1)}(z), \tilde{H}(z)$	0.000				
Lattice g_T		$h_1(x)$		ດ່າ	04	0 5	0 6
				0.5	xF	0.5	0.0

TMDs, \sqrt{s} , x_F , p_T , product $(\pi^+, \pi^-, \pi^0, \gamma) \rightarrow A_N$ can be tried for PYTHIA event weighting

Conclusion

- □ There are some options for the polarization asymmetry calculation on the event basis
- □ My opinion that it might be useful to start with event weighting approach
- □ There is preparatory work on hyperon polarization (D_{LL} , D_{TT}) estimator

V. Alexakhin LHEP JINR

25.10.2023 SPD Collaboration meeting

Backup

Thank you

V. Alexakhin LHEP JINR

25.10.2023 SPD meeting

11

"Polarized" PYTHIA 2

Example of generator truth information (taken from EIC PYTHIA):

l:	
ievent:	eventnumber running from 1 to XXX
genevent:	trials to generate this event
subprocess:	pythia subprocess (MSTI(1)), for details see tabl
nucleon:	hadron beam type (MSTI(12))
targetparton:	parton hit in the target (MSTI(16))
xtargparton:	x of target parton (PARI(34))
beamparton:	in case of resolved photon processes and soft V
xbeamparton:	x of beam parton (PARI(33))
thetabeamparton:	theta of beam parton (PARI(53))
truey, trueQ2, truex, trueW2, trueNu:	are the kinematic variables of the event.
	If radiative corrections are turned on they are dif
	If radiative corrections are turned off they are the
leptonphi:	phi of the lepton (VINT(313))
s_hat:	shat of the process (PARI(14))
t_hat:	Mandelstam t (PARI(15))
u_hat:	Mandelstm u (PARI(16))
pt2_hat:	pthat^2 of the hard scattering (PARI(18))
Q2_hat:	Q2hat of the hard scattering (PARI(22)),

4th line: ====================================		
• 5th	line: Information on track-wise variables stored in the file:	
l:	line index, runs from 1 to nrTracks	
K(I,1):	status code KS (1: stable particles 11: particles which decay 55; radiative photon)	
K(I,2):	particle KF code (211: pion, 2112:n,)	
K(I,3):	line number of parent particle	
K(I,4):	normally the line number of the first daughter; it is 0 for an undecayed particle or unfragmented parto	
K(I,5):	normally the line number of the last daughter; it is 0 for an undecayed particle or unfragmented parto	
P(I,1):	px of particle	
P(I,2):	py of particle	
P(I,3):	pz of particle	
P(I,4):	Energy of particle	
P(I,5):	mass of particle	
V(I,1):	x vertex information	
V(I,2):	y vertex information	
V(I,3):	z vertex information	

V. Alexakhin LHEP JINR 25.01.202

25.01.2023 SPD Physics & MC meeting

Hyperon production with high pT:

- □ (Un)Polarised PDFs, (un)polarized fragmentation functions,
- □ QCD crossections 2->2 (spin-dependent and not)
- □ Transmitted asymmetries give degree of final quark polarisation

$$\frac{d^{2}\sigma^{pp \to HX}}{dp_{T}d\eta} = \sum_{abcd} \int dx_{a} dx_{b} dz_{c} f_{a}(x_{a}, \mu^{2}) f_{b}(x_{b}, \mu^{2}) \frac{d\hat{\sigma}_{(ab \to cd)}}{dp_{T}d\eta} D_{c}^{H}(z_{c}, \mu^{2})$$

$$\frac{d^{2}\Delta\sigma}{dp_{T}d\eta} = \sum_{abcd} \int dx_{a} dx_{b} dz_{c} \Delta f_{a}(x_{a}, \mu^{2}) f_{b}(x_{b}, \mu^{2}) \frac{d\Delta\hat{\sigma}^{(ab \to cd)}}{dp_{T}d\eta} \Delta D_{c}^{H}(z_{c}, \mu^{2})$$
Spin-dependent PDF

Spin dependent fragmentation function

$$D_{LL} = \frac{\sigma_{p^+ p \to \overline{\Lambda}^+ X} - \sigma_{p^+ p \to \overline{\Lambda}^- X}}{\sigma_{p^+ p \to \overline{\Lambda}^+ X} + \sigma_{p^+ p \to \overline{\Lambda}^- X}} = \frac{d\Delta\sigma}{d\sigma}$$

Spin transfer to hyperons in pp

Transmitted asymmetries:

D_{LL}**extraction technics**

$$\frac{dN}{d\cos\theta} = \frac{N_{tot}}{2}A(\cos\theta)(1+\alpha P\cos\theta)$$

 $A(\cos\theta)$ - acceptance, needs MC. However using beam polarization reversal (and setup symmetry in η is suitable) it is possible to extract Λ polarization without MC, or without direct acceptance determination.

$$D_{LL} = \frac{1}{\alpha \cdot P_{beam} < \cos\theta^* >} \cdot \frac{N^+ - N}{N^+ + N}$$

, where the acceptance cancels.

$$N_{\Lambda}^{+} = N^{++} \frac{L_{--}}{L_{++}} + N^{+-} \frac{L_{--}}{L_{+-}}$$
$$N_{\Lambda}^{-} = N^{-+} \frac{L_{--}}{L_{-+}} + N^{--}$$

Relative luminosity ratio measured with BBC, and P_{beam} in RHIC.

RHIC results on DLL

Longitudinal spin transfer to Λ in DIS

Keywords: Δs , $\Delta \bar{s}(x)$ $\Delta s \neq \Delta \bar{s}(x)$?, spin-dependent FF, intrinsic strangeness of the nucleon

 $\Lambda^0 \to p + \pi^-$

 $L' \rightarrow \Lambda$ spin direction

 $\frac{dN}{d\Omega_p} = \frac{dN_0}{d\Omega_p} (1 + \alpha P_{L'}^{\Lambda} \cos \theta_{pL'})$

 $\alpha = 0.642$ for Λ ($\alpha = -0.642$ for Λ)

 $P_{\Lambda} = \frac{\sum_{q} e_{q}^{2} \left[P_{b} D(y) q(x) + P_{T} \Delta q(x) \right] \Delta D_{q}^{\Lambda}(z)}{\sum_{q} e_{q}^{2} \left[q(x) + P_{b} P_{T} D(y) \Delta q(x) \right] D_{q}^{\Lambda}(z)}$

$$P_L = D_{LL}^{\Lambda} \cdot P_b \cdot D(y)$$

