

Study of K_S^0 meson recontruction efficiency at SPD.

Natalia Rogacheva

LHEP, JINR, Dubna

SPD collaboration meeting 23-27 October 2023

Spin Physics Detector and event sample for the K_S^0 analysis

Secondary vertex (V^0) are reconstructed in the detectors: Vertex detector and Straw tracker.

Event sampleSpdRoot(March 2023)Generation: Pythia 8, (p+p) at \sqrt{S} =27 GeV, SoftQCD(MB)4 000 000 events (1 sec of data taking)

Selection criteria

PV and V0 selection:

- 1 The primary vertex coordinates has a gaussian smearing with $\sigma_z = 30$ cm, $\sigma_x = \sigma_y = 0.1$ cm,
- ② Daughters = $K^0(-211, 211), \Lambda(2212, -211), \overline{\Lambda}(-2212, 211);$ Bg = (321, -321), (-321, 211), (321, -211).

For track selection: minimum Its hits = 0; total minimum hits = 3.

- The track candidates were required to be well-fitted and to have a track fit χ^2 over the number of degrees of freedom less than 6 ($\chi^2/NDF < 6$).
- Solution Minimum χ^2_{V0} track to PV is less than 2.
- **6** Track extrapolation χ^2 is more than 10.
- Track fit is converged.

Kinematical cuts:

- **(**) $\theta_{coll} < 0.03$ rad for K^0 . This cut selects V^0 events the momentum looking at the PV.
- 2 $Dist = \sqrt{(x_{SV} x_{PV})^2 + (y_{SV} y_{PV})^2 + (z_{SV} z_{PV})^2}$. This cut selects V^0 which decay close to PV. Dist > 0.7 cm for K_S^0 .

・ロト ・四ト ・ヨト ・ヨト

Invariant mass of K_S^0 after all cuts

The shape of the K_0^S signal was parametrized by double Gaussian and background was parametrized by the second order polynomial.

The selected V^0 candidates are plated in (p, θ), (x_F, p_T) and (η , p_T) phase space Pure Pythia 8 (true), K_{S}^{0} :

Reconstruction data (RD):

N. Rogacheva (SPD collaboration meeting)

 $K_{\rm S}^0$ reconstruction study

Distribution of K_S^0 decay vertex position and decay length.

 $K_{\rm S}^0$ reconstruction study

Binning

The choice of the binning scheme is obtained from distribution of K^0 simulated in Pythia 8. It was done to have the similar number of K_S^0 in bins $(n_{bin}^{\theta} = 4, n_{bin}^{p} = 10)$.

Distributions of the K_S^0 candidates with all cuts

Mass and sigma of K_S^0 (in p for fixed θ interval)

Number of K_S^0 after different cuts and K_S^0 reconstruction efficiency with all corrections included

Total correction factor includes: geometrical acceptance, track and vertex reconstructed efficiency.

 $K_{\rm S}^0$ reconstruction study

Factorization of the MC correction

 $C1 = \frac{N(3hits)}{N(true)}$

$$C = \frac{N(RD)}{N(true)} = C1^{*}C2^{*}C3^{*}C4^{*}C5^{*}C6^{*}C7$$

- Analysis of the K_{S}^{0} reconstruction efficiency was performed.
- MC correction was factorized.
- Next step is to include feed down correction. 3

Thank you for your attention.

