Status of reconstruction in SPD ECal

Andrei Maltsev, JINR (Dubna)

SPD Collaboration Meeting

23-26 October 2023

Requirements on ECAL design from physics analyses

Prompt photons (stage 2):

- interested in $p_T > 3-4$ GeV, high background from π^0 , η , etc.
- Requirement: energy resolution at high (> 5 GeV) energies, π/γ separation

Charmonia (χ_{c1} , χ_{c2}) (stage 2):

- need to separate $\chi_{c1},\,\chi_{c2}$ from decay into J/ $\!\psi\,\gamma$
- Requirement: energy resolution at low (< 1 GeV) energies

Online polarizability measurement:

- measure azimuthal asymmetry of π^0 production
- Requirement: energy and position resolution, π/γ separation

ECAL setup

- Sampling: 200 layers × (0.5 mm lead + 1.5 scintillator)
 - ~ 5-6% energy resolution @ 1 GeV
 - ~ 1-2% energy resolution @ 8 GeV
- Cell size:
 - barrel: 34 mm (φ) × 48 mm (Z)
 - endcaps: 40 mm × 40 mm
- Barrel inner radius: 111.4 cm
 - minimal distance between γ 's from $\pi 0$ decay with energy of 8 GeV is about 4 cm
- Distance from primary vertex to endcaps: 204 cm

Current reconstruction workflow

1) per-cell energy calibration: energy deposition in scintillator layers \rightarrow energy deposition in the entire cell

2) clustering: identifying groups of neighboring cells

3) reconstruction: get particle position and energy from cluster using empirical expressions

4) π/γ ID: based on cluster shape analysis

Caveats:

- empirical calibrations in the reconstruction step sensitive to ECAL setup, maintenance is timeconsuming
- no reconstruction of individual photons in case of $\pi 0$ ID (yet)
- only full simulation of ECAL showers

Current workflow

1) per-cell energy calibration: energy deposition in scintillator layers \rightarrow energy deposition in the entire cell

2) clustering: identifying groups of neighboring cells

3) reconstruction: get particle position and energy from cluster

4) π/γ ID: based on cluster shape analysis \rightarrow only for π^0 background rejection so far

A possible approach

Another possible approach

1) per-cell energy calibration: energy deposition in scintillator layers \rightarrow energy deposition in the entire cell

2) clustering: identifying groups of neighboring cells

3) reconstruction: get particle position and energy from cluster

4) π/γ ID: based on cluster shape analysis

1) per-cell energy calibration: energy deposition in scintillator layers \rightarrow energy deposition in the entire cell

2) clustering+reconstruction+PID

with a convolutional neural network approach

Still in research stage

Status of photon reconstruction

using weighted average with empirical corrections ٠ depending on energy/angle

repository of performance tests for ECAL: ٠ \$SPDROOT/macro/performance-tests/ecal-reconstruction

Energy resolution

5

6

Relative energy error

0.3

0.25

0.2

0.15

0.1

0.05

'n

2

3

 χ^2 / ndf

8

MC Energy [GeV]

p0

p1

MC photon energy [GeV]

Prospects for cluster reconstruction

Future steps of the improvement of the reconstruction include:

- reconstruction of single-shower clusters using machine learning methods and comparison with the simple algorithm;
- reconstruction in case of two-shower cluster (e.g. from π^0): individual photons, or π^0 as a whole, while avoiding bias due to the training sample $(\pi^0/\eta \text{ etc.})$;
- the most general case: any number of showers in a cluster, reconstruction of the calorimeter as a whole (or with its regions of interest), possibly even using information from tracking detectors or RS.

Endcap-barrel bridging

• using sum of endcap+barrel energies and the position of the barrel cluster gives satisfactory results

• criteria for bridging clusters: $0.805 < cos(\theta_{barrel}) < 0.85$; $\Delta(cos(\theta)) < 0.03$; $|\Delta \phi| < 0.04$

Status of pi/gamma separation

- Neural network predicting particle type based on shape variables
- Can be extended to 3/6 outputs for reconstruction of energy/position (work in progress)

Input parameters

▶ X/Y for endcaps or Z/ϕ for barrel, inputs shown in red

Energy distribution

- S₁, M₂ cells with first and second largest energies
- S₉, S₂₅ sum of energies in 3×3, 5×5 regions around cell with highest energy
- S₆ maximum energy in 3×2 region containing both first and second largest energy cells

Size/shape $|x_{cog}|_{25} = |\frac{\sum_{i=1}^{25} E_i X_i^{rel}}{S_{25}}|,$ $|y_{cog}|_{25} = |\frac{\sum_{i=1}^{25} E_i Y_i^{rel}}{S_{25}}|$ $S_{\alpha\beta} = \frac{\sum_{i=1}^{N} e_i(\alpha_i - \alpha_c)(\beta_i - \beta_c)}{\sum_{i=1}^{N} e_i},$ $\alpha, \beta : X, Y$ $\rightarrow S_{XX}, S_{YY}, S_{XY}$ $r2 = < r^2 >= S_{XX} + S_{YY} = \frac{\sum_{i=1}^{N} e_i((x_i - x_c)^2 + (y_i - y_c)^2)}{\sum_{i=1}^{N} e_i}$

• $\kappa = \sqrt{1 - 4 \frac{S_{XX}S_{YY} - S_{XY}^2}{(S_{XX} + S_{YY})^2}} = \sqrt{1 - 4 \frac{\det S}{\operatorname{Tr}^2 S}}$ • Angle θ of incidence

Conclusions

- With the exception of barrel-endcap bridging (is being implemented), the simple simulation/reconstruction works:
 - reconstruction of individual photons gives adequate results for all angles in barrel and endcap;
 - π^0/γ separation implemented with ~80-90% efficiency, depending on the angle/energy;
 - bridging algorithm developed, to be implemented;
- biggest future milestone: splitting of a single cluster in case of it being produced by several particles:
 - ideally: a fast CNN-based approach that takes the entire calorimeter, or its regions of interest, as input;
 - next step: reconstruction of individual photons in case of single-shower of two-shower (π^0) clusters;
- other important points:
 - documentation of ECAL classes (MC cluster/MC particle/RC particle etc.)
 - bug fixes (ECAL particle association bug reported by Ruslan Akhunzyanov, warnings about vertex ordering reported by Artem Ivanov, etc.) 11