Particle Reconstruction in Range System

V. Zel on behalf of SPD Muon Group

Outline

- Data preprocessing
- Clustering
 - Metrics
 - DBSCAN
- Particle identification (classification)
 - Metrics
 - Features
 - Decision tree
 - Random forest
 - XGBoost
 - Convolution neural network
- Conclusions

Particle reconstruction in Range System

V

Information available from Range System:

- hits in Barrel: (x, y) of wires at layers and z of strips
- hits in EndCaps: (y, z) of wires and x of strips

Two steps of particle reconstruction:

Clustering - forms group of hits (clusters)
Particle identification (cluster labeling)

Work is based on the use 50k $J/\psi \rightarrow \mu\mu$ Monte Carlo events proton-proton collisions at a beam energy of E = 27 GeV

Cross section of the SPD RS

Data preprocessing

Clustering

Clustering is unsupervised machine learning technique that groups data points into clusters based on their similarities.

Performance metrics:

 $Purity = \frac{\sum_{i} N_{i,hits}^{correct}}{N_{hits}^{total}}$ $V-measure = \frac{(1+\beta)*homogeneity*completeness}{(\beta*homogeneity+completeness)},$

where by default $\beta = 1$.

- *homogeneity*: each cluster contains only members of a single class
- *completeness*: all members of a given class are assigned to the same cluster

DBSCAN (Density Based Spatial Clustering of Application with Noise):

- Can identify clusters of arbitrary shapes and sizes;
- It does not require a pre-set number of clusters;
- Handle noise and outliers in data.

Input parameters :

 ϵ - distance within which two points can be considered to belong to the same cluster;

MinPts - minimum number of points to define a cluster.

DBSCAN perfomance

Particle identification

Classification is a common task in machine learning that involved predicting the class or category of a given input data point

Algorithms used: Decision Tree, Random Forest, XGBoost, CNN.

Features

Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a type of deep learning algorithm commonly used for image and video recognition tasks.

Advantages:

- ability to capture complex patterns and relationships
- robustness to variations in input data.

Disadvantages:

- large amount of training data
- longer training time
- difficulty in interpreting the learned features.

Algorithms performance

	Decision Tree	Random Forest	XGBoost	CNN
Precision	0.94	0.95	0.94	0.89
Recall	0.90	0.89	0.90	0.96
Accuracy	0.92	0.92	0.92	0.92
F1-score	0.92	0.92	0.92	0.92
AUC-ROC	0.97	0.97	0.98	-

Conclusions

- 1. Application of the machine learning methods for muon/hadron separation has shown the promising results.
- 2. The performance of DBSCAN algorithm in the clustering analysis has been evaluated. Using the optimal parameters we obtained purity of 0.97 and v-measure of 0.98.
- 3. Decision tree, Random Forest, XGBoost and convolution neural network were tested as classifiers. In general, first three algorithms have shown the similar results (precision ~ 0.94-0.95, recall ~ 0.89-0.90). CNN have shown a good result in recall metric 0.96. However, there is a potential of improving the quality of classification using Random Forest and CNN methods.

Backup

Contribution to the error of the Random Forest algorithm:

	Muon versus Pion	Muon versus Proton	Muon versus Rest (pid: 130, 311, 321)	Muon versus Neutron
Precision	0.93	0.94	0.98	0.99
Recall	0.89	0.89	0.89	0.89
Accuracy	0.91	0.91	0.93	0.94
F1-score	0.91	0.91	0.93	0.94
AUC-ROC	0.97	0.97	0.99	0.99
Percentage of cases	55%	16.4%	13.6%	15%