

Particle Identification in SPD

Artem Ivanov JINR, Dubna

SPD Collaboration Meeting 25.10.2023

Particle identifications in SPD

PID in SPD: past status

Straw tracker

Outline

- 1) PID in new TOF geometry
- 2) FARICH
- 3) DIRC
- 4) Conclusion

Outline

- 1) PID in new TOF geometry
- 2) FARICH
- 3) DIRC
- 4) Conclusion

SPD geometry 2023

TOF geometry: changes

previous geometry geometry 2023

TOF analysis

Magnetic field

 $p \in [0.1; 8.0, step = 0.01 GeV]$

m² vs p

PID in SPD: changes

Old geometry/New geometry

Outline

- 1) PID in new TOF geometry
- 2) DIRC
- 3) FARICH
- 4) Conclusion

DIRC - Detection of Internally Reflected Cherenkov Light

Separate kaons and pions with at least 3 standard deviations for momenta up to 3.5 GeV/c

The PANDA Barrel DIRC Detector at FAIR

DIRC in SpdRoot: geometry

DIRC in SpdRoot: material

Number of module: 32

Module size = 77 (T) x 15 (W) x 3400 (L) mm

Material: SiO₂ fused Silica ("Quartz")

Atomic and nuclear properties of materials: Silicon dioxide (fused quartz) (SiO₂)

Quantity	Value	Units	Value	Units
<z a=""></z>	0.49930			
Density	2.20	g cm ⁻³		
Minimum ionization	1.699	MeV g ⁻¹ cm ²	3.737	MeV cm ⁻¹
Nuclear collision length	65.2	g cm ⁻²	29.64	cm
Nuclear interaction length	97.8	g cm ⁻²	44.47	cm
Pion collision length	91.9	g cm ⁻²	41.77	cm
Pion interaction length	128.8	g cm ⁻²	58.56	cm
Radiation length	27.05	g cm ⁻²	12.29	cm

// fused material

TGeoElement *elSi = new TGeoElement("Silicon", "Si", 14., 28.09); TGeoElement *elO = new TGeoElement("Oxygen", "O", 8., 16.00);

Double_t density = 2.200; // fused quartz
TGeoMixture *fusedsilica = new TGeoMixture("Quartz", 2, density);
fusedsilica->AddElement(elSi, 1);
fusedsilica->AddElement(el0, 2);

TGeoMedium *medfusedsilica = new TGeoMedium("medfusedsilica", 0, fusedsilica);

DIRC in SpdRoot: length

In Barrel

Study

SpdEcalRCParticle *part = (SpdEcalRCParticle *)EcalParticlesRC_→EcalParticlesRC_→At(ip); Ereco = part->GetEnergy();

Generated two samples: 1) with DIRC 2) without DIRC

TOTAL NUMBER OF RAD.L. L = 110 cm, 85 degree With DIRC = 0.28 Without DIRC = 0.16

 $\Theta \in [40 - 160]$ degree $E \in [0.1; 3.0, step = 0.01 \, GeV]$

In Barrel

(E_{true} - E_{reco})/E_{true}

Without DIRC

With DIRC

Mean and Sigma

electron

In Barrel

Xlast vertex VS Ylast vertex

In Barrel

٢9

Efficiency

photon

96% → **86%**

(E_{true} - E_{reco})/E_{true}

photon

electron

R_{last vertex} in [89 - 92]

Outline

- PID in new TOF geometry
 DIRC
- 3) FARICH
- 4) Conclusion

Focusing Aerogel RICH (FARICH) detector

center, mm

Y-Y

Purpose: identification of high momentum particles (p≥1.5 GeV)

Requirement: π/K separation at 6 GeV/c up to 3.5 σ

Principle of detector operation

1006 GeV 80604020-20 -40 -60 -80 -100-80 -100-60 100 -40 4060 80

X-X center, mm

Accumulated xy distribution of hits

FARICH in SpdRoot

Current situation

FARICH in SpdRoot: plan

Implement to SpdRoot

The first meeting with the Novosibirsk team took place on 26/09/2023

Based on stand-alone GEANT4 based simulation program from team Budker Institute of Nuclear Physics, Novosibirsk Thanks to *A.Yu. Barnyakova, V.S. Bobrovnikov*

FARICH in SpdRoot: first steps

Conclusion

TOF

• TOF PID parametrizations for geometry 2023 is updated.

DIRC

 The influence of the DIRC detector material on particle reconstruction in ECAL was examined. 10% of photons stop in DIRC. But for them DIRC works as a preshower

<u>FARICH</u>

• Work on implementation FARICH in SpdRoot is started. Stand-alone GEANT4 based simulation program from Novosibirsk team is taken as the starting point.